
On the Generalization of Learned
Structured Representations

Andrea Dittadi



Supervisor: Prof. Ole Winther

Co-supervisor: Prof. Thomas Bolander

DTU Compute
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Richard Petersens Plads

Building 324
2800 Kongens Lyngby, Denmark



Summary

Despite tremendous progress over the past decade, deep learning methods generally
fall short of human-level systematic generalization. It has been argued that explicitly
capturing the underlying structure of data should allow connectionist systems to
generalize in a more predictable and systematic manner. Indeed, evidence in humans
suggests that interpreting the world in terms of symbol-like compositional entities may
be crucial for intelligent behavior and high-level reasoning. Another common limitation
of deep learning systems is that they require large amounts of training data, which
can be expensive to obtain. In representation learning, large datasets are leveraged to
learn generic data representations that may be useful for efficient learning of arbitrary
downstream tasks.

This thesis is about structured representation learning. We study methods that learn,
with little or no supervision, representations of unstructured data that capture its hidden
structure. In the first part of the thesis, we focus on representations that disentangle the
explanatory factors of variation of the data. We scale up disentangled representation
learning to a novel robotic dataset, and perform a systematic large-scale study on the
role of pretrained representations for out-of-distribution generalization in downstream
robotic tasks. The second part of this thesis focuses on object-centric representations,
which capture the compositional structure of the input in terms of symbol-like entities,
such as objects in visual scenes. Object-centric learning methods learn to form
meaningful entities from unstructured input, enabling symbolic information processing
on a connectionist substrate. In this study, we train a selection of methods on several
common datasets, and investigate their usefulness for downstream tasks and their
ability to generalize out of distribution.
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Resumé

På trods af enorme fremskridt i løbet af det seneste årti er deep learning generelt ikke i
stand til at opnå systematisk generalisering på menneskeligt niveau. Det er en udbredt
opffattelse, at eksplicit indfangning af den underliggende struktur i data skulle gøre
det muligt for connectionistiske systemer at generalisere på en mere forudsigelig og
systematisk måde. Faktisk tyder resultater fra eksperimenter med mennesker på, at
det kan være afgørende for intelligent adfærd og ræsonnementer på højt niveau, at
fortolke verden i form af symbollignende sammensatte enheder, der kan sammensættes
og varieres. En anden almindelig begrænsning ved deep learning-systemer er, at de
kræver store mængder træningsdata, som kan være dyrt at fremskaffe. I representation
learning udnyttes store datasæt til at lære generiske datarepræsentationer, som kan
være nyttige til effektiv indlæring af vilkårlige efterfølgende opgaver.

Denne afhandling omhandler indlæring af strukturerede repræsentationer. Vi undersøger
metoder, der med lidt eller ingen supervision lærer repræsentationer af ustrukturerede
data, som opfanger den skjulte, underliggende struktur. I den første del af afhandlingen
fokuserer vi på repræsentationer, der udreder de forklarende faktorer for variation i
dataene. Vi opskalerer indlæringen af udredte repræsentationer (disentangled represen-
tations) til et nyt robotdatasæt og gennemfører en systematisk, stor-skala undersøgelse
af rollen, som forudindlærte repræsentationer spiller for generalisering uden for forde-
lingen til efterfølgende robotopgaver. Den anden del af denne afhandling fokuserer på
objektcentrerede repræsentationer, som indfanger inputets kompositoriske struktur i
form af symbollignende enheder, såsom objekter i visuelle scener. Objektcentrerede
indlæringsmetoder lærer at uddrage meningsfulde enheder fra ustruktureret input,
hvilket muliggør symbolsk informationsbehandling på et connectionistisk substrat. I
denne undersøgelse træner vi et udvalg af metoder på flere ofte anvendte datasæt og
undersøger deres anvendelighed til efterfølgende-opgaver og deres evne til at kunne
generalisere uden for fordelingen.
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CHAPTER1
Introduction

Despite the extraordinary progress made in the last decade in deep learning, human-
level intelligence still seems out of reach. Major limitations of most contemporary
methods include poor data efficiency and a lack of systematic generalization. Repre-
sentation learning provides a possible way to alleviate the efficiency issue by learning
to extract meaningful patterns in the data and represent them in a compact and
reusable way, which should facilitate solving arbitrary downstream tasks, such as
classification, abstract reasoning, planning, or robotic manipulation. In particular,
representations that explicitly capture some of the structure in the data are believed
to be beneficial for interpretability, efficiency of downstream learning, fairness, and
human-level systematic generalization. In this dissertation, we will focus on areas of
representation learning that are concerned with learning this structure: disentangled
and object-centric representation learning.

Disentangled representations separately encode the ground-truth generative factors
of variation of the data in a compact and reusable manner. Although recent years
have seen several experimental studies on disentangled representation learning for
image data, some questions remain unanswered. For example, (i) the generalization
in downstream tasks is rarely investigated thoroughly, and (ii) these studies largely
focus on toy datasets. One contribution of this thesis is a rigorous analysis of the
generalization of disentangled representations in more realistic settings, including a
large-scale study on the role of pretrained representations for the generalization in
downstream robotic tasks. Chapter 3 provides an overview of these studies and a
discussion of the key results. The original publications (Dittadi et al., 2021b; 2022b;
referred to as Papers I and II in this dissertation) are included in Chapters 5 and 6.



2 1 Introduction

Following an analogous line of reasoning, in a multi-object setting, representations
should ideally capture the compositional structure of visual scenes in terms of ob-
jects. Separately representing objects and interpreting them as compositional building
blocks should, in principle, enable complex symbolic reasoning, causal inference, and
human-like systematic generalization. However, since object-centric learning devel-
oped relatively recently as a subfield of representation learning, there is still limited
understanding of (i) the inductive biases for learning good object representations
without supervision, (ii) their usefulness for downstream tasks, and (iii) their out-of-
distribution generalization. In this dissertation, we present a systematic empirical
study that thoroughly investigates how useful these representations are in practice,
and how well common object-centric representation learning methods generalize out of
distribution (points (ii) and (iii) above). Chapter 4 provides an overview of the study
and a discussion of the major results. The original publication (Dittadi et al., 2022a;
Paper III in this dissertation) is included in Chapter 7. In an additional paper not
included in this thesis but briefly discussed in Section 4.2 (Papa, Winther, and Dittadi,
2022), we investigate architectural inductive biases that may help successfully separate
objects with complex textures (point (i) above).

1.1 Thesis outline

The main body of this dissertation consists of three parts: In the first part (Chapter 2),
we provide relevant background on the topics underlying the remainder of the thesis. In
the second part (Chapters 3 and 4), we summarize our contributions, present the most
salient results, and discuss them in depth. The third part (Chapters 5 to 7) contains
Papers I, II, and III. We outline the structure of this thesis more in detail below.

Chapter 2 introduces the relevant background for this dissertation. After a brief
overview of the history and motivation of representation learning, we discuss some
desirable properties of learned representations. We focus in particular on their for-
mat, and introduce the concept of disentanglement. We then introduce variational
autoencoders, a popular approach for generative modeling. We continue with a review
of common approaches for disentangled representation learning based on variational
autoencoders, and present the disentanglement metrics used in this thesis. Finally, we
introduce unsupervised object-centric representation learning, and present a selection
of popular methods that are relevant for this thesis.



1.1 Thesis outline 3

Chapter 3 summarizes the main contributions of Papers I and II. These papers focus
on learning (disentangled) representations in a robotic setting. In two large-scale
studies, we investigate the relationship between properties of the representations, the
performance on downstream tasks from simple factor prediction to challenging robotic
tasks, and the generalization on these downstream tasks. We start by discussing our
proposed dataset and the robotics context on which these publications are based. We
then motivate and present the experimental studies, and discuss the key results and
takeaways, leaving a more detailed analysis for Chapters 5 and 6.

Chapter 4 summarizes the main contributions of Paper III, where we perform an
empirical study on unsupervised object-centric representation learning. In this study,
we formulate three hypotheses based on common assumptions in the literature that
are however typically left implicit, and systematically test them. More specifically,
we investigate the usefulness of object representations for downstream models solving
prediction tasks, and analyze their generalization under different types of distribution
shifts at test time. Similarly to Chapter 3, in this chapter we discuss the key results
and takeaways, leaving a more detailed analysis for Chapter 7.

Chapters 5, 6 and 7 contain Papers I, II, and III, respectively. Finally, we conclude in
Chapter 8 by summarizing and discussing the main contributions of this dissertation.
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CHAPTER2
Background

This chapter provides the relevant background for the contributions of this dissertation.
We start in Section 2.1 by discussing the main motivations for representation learning,
some key challenges in terms of generalization, and properties that are widely believed
to be desirable in learned representations, such as disentanglement. In Section 2.2,
we then provide an overview of variational autoencoders, which form the basis for
some of the methods employed in this thesis, especially in the context of disentangled
representation learning. We then continue in Section 2.3 with a review of disentangled
representation learning, including common disentanglement metrics and a weakly
supervised learning method that we will employ in Papers I and II (see Chapters 3, 5
and 6). Finally, in Section 2.4 we motivate and introduce object-centric representations
and discuss a selection of recent methods for learning them without supervision (these
will be used in Paper III; see Chapters 4 and 7).

2.1 Representation learning

2.1.1 The importance of data representation

The performance of machine learning algorithms is strongly affected by the way their
input data is represented (Bengio, Courville, and Vincent, 2013; John, Kohavi, and
Pfleger, 1994; Murphy, 2012; Ragavan et al., 1993). Representations that focus on
relevant aspects of the data are easier to learn from, because the learning algorithm is
spared the burden of having to infer which information is relevant for the task, and
isolate this information from irrelevant content. Moreover, such representations should
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be more robust to changes in the input that are irrelevant to the task at hand. These
irrelevant changes are not necessarily noise in the classical signal processing sense
(Oppenheim and Schafer, 2009; Rabiner and Gold, 1975); they can also be alterations in
nuisance variables (or nuisance factors), i.e., proper factors of variation in the data that
are coincidentally irrelevant for the task under consideration but may be relevant for
others (Meehl, 1970; Fawzi and Frossard, 2016; Achille and Soatto, 2018, Section 2.2).

Traditionally, most machine learning applications involved linear models on top of
hand-engineered features (Bengio, Courville, and Vincent, 2013; LeCun, Bengio, and
Hinton, 2015; LeCun et al., 1998), whose purpose was to enrich or replace parts
of the data in order to facilitate solving the task at hand. Feature engineering can
be time-consuming as it typically relies on significant domain expertise and is often
carried out manually by humans (LeCun, Bengio, and Hinton, 2015; Murphy, 2012,
Section 1.2). For this reason, automated feature engineering has been the focus of a
considerable amount of research in the past (Aha, 1991; Belongie, Malik, and Puzicha,
2001; Dalal and Triggs, 2005; Freeman and Roth, 1995; Freeman et al., 1996; Hirsh and
Japkowicz, 1994; Lowe, 1999; Markovitch and Rosenstein, 2002; Matheus and Rendell,
1989; Scott and Matwin, 1999; Sutton and Matheus, 1991; Viola, Jones, and Snow,
2005), and is still relevant in some domains (Khurana, Samulowitz, and Turaga, 2018;
Khurana et al., 2016; Lam et al., 2017; Nargesian et al., 2017; Zöller and Huber, 2021).

2.1.2 Deep neural networks

Deep learning approaches (LeCun, Bengio, and Hinton, 2015; Schmidhuber, 2015)
do away with this expensive, often problem-specific feature engineering, and instead
learn to extract data representations that are suitable for the task, together with
the task itself. Such methods are based on Deep Neural Networks (DNNs), which
consist of compositions of non-linear transformations, typically called layers. Each
transformation computes a more abstract representation of the data using the less
abstract, lower-level representations from the previous layers (Ballard, 1987). The
deeper the layer—i.e., the further removed from the data—the more abstract and
useful its representation of the data can be, as “more abstract concepts can be often
be constructed in terms of less abstract ones” (Bengio, Courville, and Vincent, 2013).1

Furthermore, the complexity of the set of functions learnable by deep networks can
1This abstraction can be explicitly built into the architecture (e.g., pooling in convolutional neural
networks), but it should also naturally occur when the task to be solved ultimately requires abstraction
(e.g., classification of high-level concepts from raw unstructured data).
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grow exponentially with the network’s depth (Eldan and Shamir, 2016; Montufar et al.,
2014; Pascanu, Montufar, and Bengio, 2013; Raghu et al., 2017; Safran and Shamir,
2017; Telgarsky, 2016; but see also Håstad (1986), Håstad and Goldmann (1991), and
Wegener (1987) for related results before the deep learning era) since the features
at different layers can be re-used and composed in exponentially many ways (Bengio,
Courville, and Vincent, 2013, Section 3.4).

Therefore, in addition to eliminating the need for the labor-intensive feature engineering
on which traditional machine learning methods rely, DNNs can learn very flexible,
abstract representations that are potentially even more suitable for a given task
than problem-specific hand-engineered features—and they can do this directly from
unstructured data. Their increased flexibility and ease of applicability have led DNNs
to redefine the state of the art in a broad range of domains, with notable early successes
in, e.g., image and video recognition (Ciresan et al., 2011; Krizhevsky, Sutskever, and
Hinton, 2012; Sermanet et al., 2013; Simonyan and Zisserman, 2014; Zeiler and Fergus,
2014), natural language processing (Bordes, Chopra, and Weston, 2014; Collobert
et al., 2011; Jean et al., 2014; Mikolov et al., 2011; Schwenk, Rousseau, and Attik,
2012; Seide, Li, and Yu, 2011; Socher et al., 2011; Sutskever, Vinyals, and Le, 2014),
speech recognition (Hinton et al., 2012; Le et al., 2012; Mohamed, Dahl, and Hinton,
2011; Sainath et al., 2013), generation of images (Denton et al., 2015; Goodfellow et al.,
2014; Mirza and Osindero, 2014) and raw audio (Oord et al., 2016), and reinforcement
learning from unstructured visual input (Lillicrap et al., 2015; Mnih et al., 2015;
Schulman et al., 2015a).

2.1.3 Learning generic representations for downstream tasks

Deep networks have also been employed to learn generic representations that are not
tailored to a specific task and can be later used for arbitrary downstream tasks (Bengio,
Courville, and Vincent, 2013). The learned representation function r, which maps
a data point x to its representation r(x), is then typically used as a black box for
downstream learning (Brown et al., 2020a; Finn et al., 2016; Ha and Schmidhuber, 2018;
Kingma et al., 2014; Peters et al., 2018; Stooke et al., 2021) or adapted (fine-tuned) to
the task at hand (Hinton and Salakhutdinov, 2006; Kolesnikov et al., 2020; Zbontar
et al., 2021; Zhai et al., 2019). This approach is simply called representation learning
(Bengio, Courville, and Vincent, 2013; Hamilton, 2020; Lesort et al., 2018; Rumelhart,
Hinton, and Williams, 1986; Tschannen, Bachem, and Lucic, 2018; Wang and Isola,
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2020), with the implication that no further objective is of interest at this stage, other
than learning r itself.2 These generic representation functions can be learned without
supervision (Bengio et al., 2006; Chen et al., 2020a; Donahue and Simonyan, 2019;
Hinton and Salakhutdinov, 2006; Radford et al., 2018; Ranzato et al., 2007; 2006), with
self-supervision—i.e., technically unsupervised but trained with supervised learning
using, e.g., auxiliary tasks (Ahmed et al., 2008; Doersch, Gupta, and Efros, 2015;
Dosovitskiy et al., 2014; Gidaris, Singh, and Komodakis, 2018; Kolesnikov, Zhai, and
Beyer, 2019) or contrastive methods (Chen et al., 2020b; He et al., 2020; Oord, Li,
and Vinyals, 2018; Tian et al., 2020; Zbontar et al., 2021)—or with supervision on
another dataset where numerous labeled examples are available (Girshick et al., 2014;
Joulin et al., 2016; Kolesnikov et al., 2020; Sharif Razavian et al., 2014; Sun et al.,
2017; Van Den Oord, Dieleman, and Schrauwen, 2014; Zeiler and Fergus, 2014).

A primary reason to do representation learning is that learning from raw data typically
requires a large amount of labeled examples, which may be expensive or impossible to
obtain. One way to alleviate this issue is to leverage other sources of data that at least
partially share the structure of the target task. This paradigm is broadly referred to
as transfer learning (Pan and Yang, 2009; Pratt and Jennings, 1996; Tan et al., 2018)
as it involves transferring knowledge learned on one or more source tasks to a target
task. The source task may or may not be supervised, and there may be a covariate
distribution shift, a change in the task definition (e.g., unsupervised to supervised, or a
different conditional distribution of the labels, or even a different label space), or both.

For example, Zhai et al. (2019) conduct a study of transfer learning in vision, where
deep networks are trained on supervised, unsupervised, or self-supervised tasks on
ImageNet (Deng et al., 2009), and the target tasks differ from the source tasks in terms
of both the covariate distribution and the label space. Another example is domain
adaptation (Pan et al., 2010; Wang and Deng, 2018), where the source and target tasks
are exactly the same (e.g., the conditional distribution of the classification labels p(y |x)
is unchanged) but the covariates x undergo a distribution shift. It may also be the case
that the source and target tasks differ while the data distribution p(x) does not: for
example, the source task could be unsupervised or self-supervised, and the target task
may be classification or reinforcement learning (Grill et al., 2020; Laskin, Srinivas, and
Abbeel, 2020). This can be seen as an instance of semi-supervised learning (Chapelle,

2In these cases, even if the representations are learned by training a DNN to solve a specific supervised
(or self-supervised) task—such as classification on a massive dataset of real-world images—the ultimate
goal is not to solve these (auxiliary) tasks as much as it is to learn meaningful representations for
later use.
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Schölkopf, and Zien, 2006; Van Engelen and Hoos, 2020; Zhu, 2005).3 Examples of
this scenario include Papers I, II, and III (Dittadi et al., 2022a; 2021b; 2022b) as
well as some of our works not included in this dissertation (Dittadi, Drachmann, and
Bolander, 2021; Papa, Winther, and Dittadi, 2022; Träuble et al., 2021); however, in
some of these works we also include experiments where the data distribution changes,
e.g. with unseen values of the factors of variation (Dittadi et al., 2022a; 2021b; 2022b),
synthetic image manipulations (Dittadi et al., 2022a), or from simulated data to the
real world (Dittadi et al., 2021b; 2022b). Finally, an increasingly common approach in
transfer learning is to train very large DNNs on massive generic datasets and adapt
them to a wide range of downstream tasks (Brown et al., 2020b; Chen et al., 2020b;
Devlin et al., 2019; Hénaff et al., 2021; Radford et al., 2021b; and see a discussion on
the so-called foundation models in Bommasani et al. (2021)).

Even if data from the target task is available, learning from raw data may nevertheless
be very inefficient when the task to be solved is particularly difficult, or when the
function we are trying to learn is complex and highly-varying (Bengio, 2009, Section 2).
This issue lies at the heart of the challenge of training deep architectures (Bengio,
Courville, and Vincent, 2013, Section 10.1), which until the early 2010s was mostly
based on layerwise unsupervised pretraining (Erhan et al., 2010). For example, even
after recent significant significant progress in training very deep models, reinforcement
learning algorithms are often trained from learned low-dimensional representations
(Dittadi et al., 2022b; Finn et al., 2016; Stooke et al., 2021) or from the ground-truth
state of the environment, if available (Ahmed et al., 2021; Lee, Hu, and Lim, 2021;
Vinyals et al., 2019; Yu et al., 2020). Finally, even if learning end-to-end from raw
data were practically feasible, it would still be advantageous (e.g., in terms of data and
compute) to reuse a representation function that captures all the salient information
in the data, rather than learn every new task from scratch.

2.1.4 Desirable properties of learned representations

We introduced and motivated representation learning, and argued that pretrained
representations can be beneficial for efficient learning of downstream tasks, in particular
when obtaining target task data is costly. We will now consider desirable properties of
the learned representation functions, more specifically in terms of their information

3Roughly falling into the unsupervised preprocessing category of semi-supervised learning, more
specifically feature extraction and pretraining (Van Engelen and Hoos, 2020, Section 5).
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content and their structure.

2.1.4.1 Information content

When learning a representation to be used for a downstream task, the representation
should be sufficient for the task, i.e., it should retain all necessary information to
solve it. On the other hand, we would like the representation to be minimal—i.e., to
omit any information about the data that is not relevant for the task—and therefore
invariant to irrelevant changes in the input (Bengio, Courville, and Vincent, 2013).
Achille and Soatto (2018, Section 2.1) define a representation z of the data x to be
sufficient for a task y (the target variable we wish to predict) if I(z; y) = I(x; y),
i.e., the representation z contains as much information about the task as the data x
itself (or, equivalently, x and y are conditionally independent given z). Among the
sufficient representations, the one that minimizes I(x; z) is said to be minimal, because
it contains just enough information about the data to allow solving the task, and is
therefore invariant to the effect of nuisance factors (Achille and Soatto, 2018, Section 3).

The problem is that these notions are task-dependent: A sufficient representation for
a task may not be sufficient for another task if the representation omits information
that is irrelevant for the first task but necessary for the second. Even in a multi-task
setting (Caruana, 1997; Ruder, 2017), a representation that is sufficient for all training
tasks while minimizing I(x; z) might be insufficient for a test task. This points to a
fundamental trade-off between generality (usefulness for as many tasks as possible) and
usefulness for specific tasks (potentially giving up usefulness for other tasks). Since
future tasks are not necessarily known ahead of time, a sensible approach is to learn
generic task-agnostic representations that make it possible to solve any downstream
task that might be reasonably expected.4

2.1.4.2 Structure

We now shift our focus from what information is in the representation to how this
information is represented. To do so, we consider the generative aspect of the data. A
common assumption is that the data is the result of a generative process where the
factors of variation of the data tend to vary independently of each other, and typically

4Different tasks “provide different views on the same underlying reality” (Bengio, 2009).
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few of them at a time vary in consecutive real-world inputs (Bengio, Courville, and
Vincent, 2013; Schölkopf et al., 2021). These explanatory variables of the data, which
we denote by the vector g, are then mixed in a potentially highly complex and non-
linear way according to a conditional distribution p(x |g), to give rise to the observed
data x. Ideally, given a data point x, we would like to find the ground-truth factors g
that generated it—or, following a Bayesian approach, the posterior distribution

p(g |x) = p(g)p(x |g)∫
g p(g)p(x |g)dg

(2.1)

of such factors. As we typically do not have access to the true generative model, nor
to the ground-truth generative factors g underlying each observed data point x, we
learn representations z = r(x), with x ∼ p(x |g), that are in general different from g.

Under the assumptions above, a good task-agnostic representation should preserve as
much information as possible about the data, while separating, or disentangling, its
explanatory factors of variation (Bengio, Courville, and Vincent, 2013, Section 3.5)
in a compact and reusable manner (see Devereux et al. (2014) for evidence in humans).
Although there is no generally agreed-upon definition of disentanglement, the core idea is
that each specific factor zj in a disentangled representation z = r(x) should only reflect
the state of one ground-truth generative factor of variation gi.5 Intuitively, this should
enable downstream processing systems (e.g., a classifier) to flexibly access the subset of
factors in g that are relevant for the given task. In practice, disentangled representations
have proven useful, e.g., for interpretability (Adel, Ghahramani, and Weller, 2018;
Higgins et al., 2018), fairness of downstream models (Locatello et al., 2019a; Träuble
et al., 2021), efficient downstream learning for reasoning tasks (Steenkiste et al., 2019),
and generalization (Dittadi et al., 2021b; Locatello et al., 2020b).

Computer graphics provides a related perspective, where the data is generated by
a known simulator given the generative factors g, i.e., p(x |g) is available. These
graphics codes present a compact description of a scene that aligns well with the
desired representational properties discussed above. From this point of view, the task
of inferring the generative factors of the data is sometimes also known as inverse
graphics (Kulkarni et al., 2015), and has also been applied to inverting a known

5Sometimes, the definition of disentanglement is taken to be the converse, i.e., a change in one factor
gi should only affect one dimension of the representation (Chen et al., 2018). Arguably, this does
not reflect the intuitive notion of disentanglement, since it allows multiple explanatory factors to be
reflected in a single dimension of the representation. It has been termed completeness by Eastwood
and Williams (2018), since a representation satisfying this definition would consist of elements that
completely describe one (or more) factors of variation of the data.
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generative process such as a graphics engine (Eslami et al., 2016; Wu et al., 2017; Wu,
Tenenbaum, and Kohli, 2017).

2.1.5 Challenges for generalization

Despite the benefits in terms of efficient learning of downstream tasks, especially
when obtaining target task data is costly, there are practical issues when learning
representations from raw data. First, there may be correlations or biases in the data
that will be captured by the representations (Mehrabi et al., 2021; Torralba and Efros,
2011; Träuble et al., 2021), thereby limiting their generality and applicability.6 Second,
it might be desirable for learned representations to be invariant to some changes in
the input, e.g., in terms of nuisance (task-irrelevant) variables in classification under
domain shift (Anselmi et al., 2016; Pei et al., 2018) or in downstream reinforcement
learning tasks (Zhang et al., 2020); if such invariances cannot be inferred from the
training data distribution—e.g., if a nuisance variable such as lighting conditions in a
scene is constant across the entire dataset—the learned representation function will
not naturally exhibit them.

These issues can be problematic for generalization. For example, if a representation
function is not invariant to lighting conditions, the representation r(x) of an image x
with unseen lighting conditions at test time may inaccurately represent other relevant
information in the image. This issue is tackled, for example, in Papers I and II
(Dittadi et al., 2021b; 2022b). Regarding correlations, a training dataset may for
example contain images of a mountain landscape only in daylight, while city scenes are
uniformly collected during day and night. Representation functions trained on such
a dataset might not generalize well to photographs taken in the mountains at night,
even though both mountain images and nighttime images are included in the training
data. In Träuble et al. (2021), we discuss training data correlations in the context of
disentangled representation learning.

A conceptually simple solution is to collect more training data (Henighan et al.,
2020; Kaplan et al., 2020; Sutton, 2019), assuming that in the limit of infinite data
the spurious correlations and biases will disappear. However, despite the impressive
generalization results of recent large-scale models trained on massive datasets (Brown

6This is also related to “shortcut learning” of surface statistics and spurious correlations. Relevant
work in computer vision includes Hendrycks et al. (2021), Ilyas et al. (2019), Jo and Bengio (2017),
and Xiao et al. (2021).
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et al., 2020a; Chowdhery et al., 2022; Radford et al., 2021a; Ramesh et al., 2022; 2021),
their significance is sometimes called into question (Bender et al., 2021, Section 6.1;
Heaven, 2021; Marcus, 2022), while bias (Abid, Farooqi, and Zou, 2021; Bender et al.,
2021, Section 6.2) and training data memorization (Carlini et al., 2021) appear to
persist.7 An alternative solution is to attempt to directly resolve these biases during
data collection and preprocessing, or in the learning algorithm itself (Mehrabi et al.,
2021, Section 5.1).8 Finally, we can mitigate some of these issues by introducing
inductive biases (Mitchell, 1980), e.g., in the model architecture, in the training
objective, or in the optimization procedure (Geirhos et al., 2020). Intuitively, among
the many possible ways an algorithm could generalize, inductive biases should help
choose one (an inductive bias is “any basis for choosing one generalization over another,
other than strict consistency with the observed training instances” (Mitchell, 1980)).
They typically derive from assumptions we make about the data or from potential
constraints or requirements in the learning problem.

As discussed in Section 2.1.4, it has been argued that capturing and disentangling all
factors of variation underlying the data—rather than attempting to build invariances
in the representations—should lead to robust representations that generalize better
(Bengio, Courville, and Vincent, 2013; Schölkopf et al., 2021). In Section 2.3, we will
discuss the learning and evaluation of disentangled representations. Many popular
disentanglement learning methods, including those in this dissertation, are based on
variational autoencoders, which are covered next.

2.2 Variational autoencoders

This section introduces variational autoencoders, a framework for variational inference
in generative models that can be used for representation learning. In Section 2.3, we
will then discuss common disentangled representation learning methods that are based
on variational autoencoders.

7It should be noted that the concept of generalization itself may be ill-posed as the training distributions
become ever wider. What appear to be strong generalization capabilities might in fact be explained
by (arguably very complex) interpolation. On the other hand, it becomes increasingly more difficult
to define meaningful generalization tasks, since the training distributions are so wide.

8Note that there are other sources of bias and discrimination than the data itself (Mehrabi et al.,
2021, Section 3.1).
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Latent variable models. Latent variable models (LVMs) are probabilistic models
with unobserved variables. In the following, we will denote the observed variables by x,
and the unobserved latent variables by z. For simplicity, both x and z can be assumed
to be vectors. The marginal distribution over the observed data is:

pθ(x) =
∫

z
pθ(x, z)dz (2.2)

where pθ(x, z) is the joint distribution over observed and latent variables, and θ is a
vector of model parameters. This probability distribution is typically called marginal
likelihood or model evidence. Note that this is the marginal likelihood of a single data
point. We are typically interested in the expectation of this quantity over the true
data distribution, or more pragmatically, over the empirical data distribution q(x):

Eq(x) [pθ(x)] = 1
N

N∑
i=1

pθ(x) = 1
N

N∑
i=1

∫
z(i)

pθ(x(i), z(i))dz(i) (2.3)

where N is the size of the data set and the superscript denotes different data points.
We will omit this outer expectation in the following, unless noted otherwise.

A simple and rather common structure for LVMs is:

pθ(x, z) = pθ(x |z)pθ(z) (2.4)

where pθ(z) is the prior distribution over the latent variables and pθ(x |z) is the
conditional distribution of a data point given the latent variables, typically called
likelihood. This structure suggests a generative interpretation of latent variable models:
a data point x arises from a generative process (see Section 2.1.4.2) whereby latent
variables z are first sampled from the prior pθ(z) and then used for conditional sampling
of an observation x according to the conditional distribution pθ(x |z).

Posterior inference. From the representation learning point of view (Section 2.1),
it is typically of interest to invert this generative process and infer the posterior
distribution of the latent variables given the observed data, i.e., intuitively, find the
value of the latent variables that gave rise to the observation (see Section 2.1.4.2, where
in (2.1) we write the posterior of the latent variables of the ground-truth generative
model). This is typically known as posterior inference.

The posterior distribution of the latent variables:

pθ(z |x) = pθ(x |z)pθ(z)
pθ(x) = pθ(x |z)pθ(z)∫

z pθ(x |z)pθ(z)dz
(2.5)
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is often intractable—e.g., when the likelihood is a non-linear function parameterized
by a deep neural network—due to the lack of a practical estimator of, or an analytical
solution to the integral in (2.2), which appears as denominator in (2.5).

Approximating the posterior with variational inference. The issue of the
intractability of the latent posterior is addressed by approximating it with sampling
methods or variational inference. Methods in the former class, such as Markov Chain
Monte Carlo (MCMC), yield samples from the exact posterior distribution in the limit of
infinite samples, so the approximation simply derives from having finite computational
resources. The main limitation of these methods is that they do not scale well with
dataset size and model complexity.

On the other hand, variational inference trades sampling for optimization, and provides
a deterministic approximation to the posterior. In variational inference, we define a
variational distribution qφ(z), with parameters φ, that approximates the posterior
pθ(z |x), and is therefore also known as approximate posterior. The variational distri-
bution is then optimized to minimize a divergence from the true posterior, typically
the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951):

DKL(qφ(z) ‖ pθ(z |x)) = Eqφ(z)

[
log qφ(z)

pθ(z |x)

]
(2.6)

which is a non-negative quantity and is equal to 0 if and only if qφ(z) = pθ(z |x)
almost everywhere. Note that, in the standard case, qφ(z) approximates the posterior
distribution for a single data point x, and is derived or optimized separately for each
example. In practice, the approximate posterior is restricted to a family of distributions
that are flexible enough to yield a good approximation, but simple enough to allow for
efficient optimization.

For any choice of qφ, we have:

log pθ(x) = logEqφ(z)

[
pθ(x, z)
qφ(z)

]
≥ Eqφ(z)

[
log pθ(x, z)

qφ(z)

]
= LELBO

θ,φ (x) (2.7)

using Jensen’s inequality and the fact that the logarithm is a concave function. The
quantity LELBO

θ,φ (x) is called Evidence Lower BOund (ELBO) as it is a lower bound to
the marginal log-likelihood (or model evidence).

Crucially, maximizing this lower bound with respect to the variational parameters
φ is equivalent to minimizing the KL divergence between the true and approximate
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posterior distributions in (2.6). This can be shown by decomposing the log-likelihood
as follows:

log pθ(x) = Eqφ(z) [log pθ(x)]

= Eqφ(z)

[
log pθ(x, z)

pθ(z |x)
qφ(z)
qφ(z)

]
= Eqφ(z)

[
log pθ(x, z)

qφ(z)

]
+DKL(qφ(z) ‖ pθ(z |x)) . (2.8)

Now, observe that the l.h.s. log pθ(x) is fixed as we are only optimizing the approximate
posterior. We can therefore conclude that maximizing the ELBO (2.7), which is the
first term in (2.8), is equivalent to minimizing the KL divergence in the second term.
Since the KL divergence is non-negative, this also provides an alternative derivation of
the ELBO without using Jensen’s inequality (cf. Eq. (2.7)).

Variational autoencoders. In contrast to traditional variational inference methods,
where each data point has its own variational parameters that are optimized separately,
amortized variational inference (Gershman and Goodman, 2014) uses function approxi-
mators like neural networks to share variational parameters across data points. Beside
improving learning efficiency and allowing variational inference to scale to massive
datasets, this amortization enables efficient inference on new data points at test time,
whereas in traditional variational inference this would require an expensive optimization
of the ELBO. In amortized variational inference, the approximate posterior of the
latent variables is conditional on the observed data and denoted by qφ(z |x), so the
ELBO for one data point can be written as follows:

LELBO
θ,φ (x) = Eqφ(z |x)

[
log pθ(x, z)

qφ(z |x)

]
≤ log pθ(x) . (2.9)

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mohamed,
and Wierstra, 2014) are a framework for amortized stochastic variational inference, in
which the expectation of the ELBO over the dataset

Eq(x)
[
LELBO
θ,φ (x)

]
(2.10)

is maximized by jointly optimizing the inference model and the LVM (i.e., φ and θ,
respectively) with stochastic gradient ascent. The ELBO (2.9) to be maximized can
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be decomposed as follows (for one data point):

LELBO
θ,φ (x) = Eqφ(z |x) [log pθ(x |z)]− Eqφ(z |x)

[
log qφ(z |x)

pθ(z)

]
= Eqφ(z |x) [log pθ(x |z)]−DKL(qφ(z |x) ‖ pθ(z)) (2.11)

where the first term can be interpreted as negative expected reconstruction error, and
the second term is the KL divergence from the prior pθ(z) to the approximate posterior.
In this setting, qφ(z |x) is often called inference model or encoder, while the likelihood
pθ(x |z) is called decoder. Typically, the prior is a fixed, isotropic Gaussian distribution
with unit variance, such that the dependency on the parameters θ can be dropped:

p(z) = N (z; 0, I) . (2.12)

The approximate posterior qφ(z |x) is also a Gaussian with diagonal covariance matrix,
but here the means and variances of each component are the output of an encoder
network that takes the data as input:

qφ(z |x) = N (z; µφ(x),diag(σφ(x))) . (2.13)

VAE optimization. A crucial issue with the approach presented above is that the
gradients of the ELBO cannot be naively backpropagated through the sampling step.
However, for a rather large class of probability distributions (Kingma and Welling,
2014), a random variable can be expressed as a differentiable, deterministic transforma-
tion of an auxiliary variable with an independent marginal distribution. For example,
if ε ∼ N (0, 1) and z = σφ(x) ε+ µφ(x), then z is a sample from a Gaussian random
variable with mean µφ(x) and standard deviation σφ(x). Thanks to this reparam-
eterization, z can be differentiated with respect to φ by standard backpropagation.
This widely used approach, called pathwise gradient estimator, tends to exhibit lower
variance than the alternatives, which are typically based on the score function gradient
estimator (Ranganath, Gerrish, and Blei, 2014; Williams, 1992).9

In the standard case, z follows a simple multivariate probability distribution such
as a Gaussian with diagonal covariance. However, we can incorporate knowledge or

9However, the variance of this estimator can be reduced via control variates (Glasserman, 2004)—see,
e.g., Mnih and Gregor (2014), Mnih and Rezende (2016), and Tucker et al. (2017). Additionally,
there is a line of work that focuses on using multiple stochastic samples of the ELBO (Burda, Grosse,
and Salakhutdinov, 2015, importance-weighted ELBO) to improve gradient estimates (Rainforth
et al., 2018; Roeder, Wu, and Duvenaud, 2017); this includes our own work on optimal control
variates for importance-weighted bounds (Liévin et al., 2020).
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assumptions about the generative process by defining a more structured probabilistic
model. We apply this to object-centric generative modeling (see Section 2.4) in Dittadi
and Winther (2019).

Rate–distortion tradeoff. From an information theory perspective, optimizing the
variational lower bound (2.11) involves a tradeoff between rate and distortion, where
the reconstruction term represents distortion and the divergence term represents rate
(Alemi et al., 2018). A straightforward way to control the rate–distortion tradeoff is to
use the β-VAE framework (Higgins et al., 2017a), in which the training objective (2.9)
is modified by scaling the KL term with a scalar β > 0:

Lθ,φ,β(x) = Eqφ(z |x) [log pθ(x |z)]− βDKL(qφ(z |x) ‖ p(z)) . (2.14)

In Section 2.3.1, we will review more fine-grained modulations of the KL term that
have been proposed to encourage learning disentangled representations.

2.3 Disentanglement

In Section 2.1, we have discussed the importance of data representations and some
desirable properties such as disentanglement. A substantial body of work spanning
multiple decades has argued or demonstrated that learning disentangled representations
is beneficial for a variety of purposes (e.g., Barlow, 1989; Bengio, Courville, and Vincent,
2013; Kulkarni et al., 2015; Lake et al., 2017; Locatello et al., 2019a; Peters, Janzing,
and Schölkopf, 2017; Schmidhuber, 1992; Schölkopf et al., 2021; Steenkiste et al., 2019;
Tschannen, Bachem, and Lucic, 2018). In this section, we provide an overview of
common modern methods for learning disentangled representations, as well as popular
metrics to assess their degree of disentanglement.

2.3.1 Learning disentangled representations

Most state-of-the-art methods for unsupervised disentanglement learning are based
on the variational autoencoder (VAE) framework introduced in Section 2.2. The
relative success of VAEs in disentanglement may be explained by the stochasticity
of the encoder, which promotes local orthogonality due to its diagonal covariance
structure (Rolinek, Zietlow, and Martius, 2019). While approaches based on generative
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adversarial networks (GANs) exist, these typically only disentangle style and content
and require some form of weak supervision (Chen et al., 2016; Lee et al., 2018; Mathieu
et al., 2016). In the following, we present several VAE-based approaches for learning
disentangled representations.

β-VAE. The β-VAE (see Eq. (2.14)) modulates the bottleneck capacity—i.e., the
amount of information the model is allowed to represent in the latent variables—by
modifying the KL divergence term of the ELBO (2.11) which intuitively acts as a
regularizer for the approximate posterior. Increasing β encourages more structured
(Burgess et al., 2018) but less informative representations, and corresponds to a lower
rate and a higher distortion from the point of view of the rate–distortion tradeoff
(Alemi et al., 2018). Decreasing β, on the other hand, leads to a higher rate and
a lower distortion—i.e., more information in the latent variables and more accurate
data reconstructions—but too weak a regularization may result in less structured
and less useful representations (Bengio, Courville, and Vincent, 2013; Higgins et al.,
2017a). Indeed, in our work we have observed that higher values of β tend to encourage
disentanglement (Chen et al., 2021; Dittadi et al., 2021b; 2022b; Träuble et al., 2021),
confirming previous results (Burgess et al., 2018; Higgins et al., 2017a). However, this
behavior is not robust and it appears to strongly depend on the dataset (Locatello
et al., 2019b, Fig. 15).

AnnealVAE. While this approach may be promising, a crucial issue is that the
rate–distortion trade-off is, in some sense (and with some vigorous handwaving), in-
dependently present for each factor of variation. More concretely, let us assume there
are two discrete factors of variation with the same number of possible values, and both
affecting the color of an object. If the sizes of these objects differ significantly (e.g.,
one object constitutes the entire background while the other is a small cube in the
foreground), the two factors will affect the reconstruction term pθ(x |z) in the objective
function to dramatically different extents. Given a bottleneck with limited capacity
(i.e., a strong regularization in latent space, attainable for example by choosing β � 1)
the factor with a minimal effect on the likelihood would be ignored. In general, the
inference model will simply ignore the factors of variation that are not worth being
modeled—in other words, those that require too high a rate compared to the modest
reduction in distortion that modeling them would bring. We have observed this while
running experiments for Dittadi et al. (2021b, not shown in the paper): some of the
β-VAEs trained with β = 4 did not model the rotation of the cube, and the learned
generative model produced a cylinder (with the correct color and location), which can
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be interpreted as a cube averaged over all its possible rotations.

Noticing this issue, Burgess et al. (2018) proposed to address it by introducing the
AnnealVAE, where the bottleneck capacity is progressively increased. The objective
function then becomes:

Lθ,φ,γ(x) = Eqφ(z |x) [log pθ(x |z)]− γ |DKL(qφ(z |x) ‖ p(z))− C| (2.15)

where γ > 0 plays a similar role to β, and C is annealed from 0 (which corresponds to
a β-VAE with β = γ) to a potentially large positive value.

β-TCVAE and FactorVAE. Let us now consider the KL term of the ELBO (2.11),
and decompose its expectation with respect to the data distribution q(x) as follows:

Eq(x) [DKL(qφ(z |x) ‖ p(z))]

= Eq(x)Eqφ(z |x)

[
log qφ(z |x)

p(z)

]
= Eq(x)Eqφ(z |x)

[
log qφ(z |x)

p(z)
q(x)qφ(z)

∏
i qφ(zi)

q(x)qφ(z)
∏
i qφ(zi)

]
= DKL(qφ(z |x)q(x) ‖ qφ(z)q(x))︸ ︷︷ ︸

or Eq(x)[DKL(qφ(z |x) |qφ(z))]

+ Eqφ(z)

[
log qφ(z)∏

i qφ(zi)

]
+ Eqφ(z)

[
log
∏
i qφ(zi)∏
i p(zi)

]
= I(x; z) +DKL

(
qφ(z)

∥∥∥ ∏
i
qφ(zi)

)
+
∑

i
DKL (qφ(zi) ‖ p(zi)) (2.16)

where zi denotes the ith dimension of the latent variable z.10 This expression appears
with a negative sign in the VAE objective function (i.e., the expected ELBO over
the entire dataset (2.10)), and is therefore minimized. The first term is the mutual
information between x and z with x, z ∼ qφ(z |x)q(x). It is zero when qφ(z |x) = qφ(z)
almost everywhere, i.e., when the approximate posterior does not depend on the input.
Penalizing this mutual information through the information bottleneck has been found
to encourage compact and disentangled representations (Achille and Soatto, 2018;
Burgess et al., 2018). On the other hand, it has also been argued that this term should
not be penalized at all (Kim and Mnih, 2018; Makhzani et al., 2015; Zhao, Song, and
Ermon, 2017). The second term is the total correlation (TC) of the variables {zi}

10In fact, this decomposition holds for any partition of the dimensions of z, but we focus on the case
where each zi is a scalar variable.
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under the distributions {qφ(zi)}. This is a generalization of the mutual information to
multiple variables (Watanabe, 1960) and in this case penalizes aggregate posteriors

qφ(z) = Eq(x) [qφ(z |x)] = 1
N

N∑
i=1

qφ(z(i) |x(i)) (2.17)

that do not factorize. Finally, the third term is the dimension-wise KL divergence from
the prior to the aggregate posterior, which encourages each component of qφ(z |x) to
be close to its prior (which is typically N (zi; 0, 1)).

Chen et al. (2018) argue that the total correlation term is what should be regularized in
order to encourage disentanglement, and is the reason why β-VAEs tend to learn more
disentangled representations when β is increased. Both the β-TCVAE (Chen et al.,
2018) and the FactorVAE (Kim and Mnih, 2018) modify the standard ELBO objective
by scaling the total correlation by a factor γ > 1, albeit using different estimators for
this quantity. The objective function to be maximized can then be rewritten in terms
of the original ELBO objective (2.11) as follows:

Eq(x) [Lθ,φ,γ(x)] = Eq(x)Eqφ(z |x) [log pθ(x |z)]− I(x; z)

− γ DKL

(
qφ(z)

∥∥∥ ∏
i
qφ(zi)

)
−
∑

i
DKL (qφ(zi) ‖ p(zi))

= Eq(x)
[
LELBO
θ,φ (x)

]
− (γ − 1)DKL

(
qφ(z)

∥∥∥ ∏
i
qφ(zi)

)
(2.18)

where we explicitly include the expectation over the dataset, which is necessary for
the decomposition in Eq. (2.16). The additional regularizer on the total correlation
vanishes when γ = 1, resulting in the standard VAE objective.

DIP-VAE. Finally, Kumar, Sattigeri, and Balakrishnan (2018) claim that the
standard VAE objective is not sufficient to encourage disentanglement, and propose
to explicitly regularize a divergence between the prior and the aggregate posterior, to
encourage the latter to be disentangled. The desired objective function (including the
expectation over the data distribution) is then:

Eq(x) [Lθ,φ,γ(x)] = Eq(x)
[
LELBO
θ,φ (x)

]
− γ D (qφ(z) ‖ p(z)) (2.19)

where D is an arbitrary divergence. Note that, when D is the KL divergence,
D (qφ(z) ‖ p(z)) is equal to the sum of the second and third terms in (2.16). Ku-
mar, Sattigeri, and Balakrishnan (2018) introduce two ways of approximating the
additional divergence term, corresponding to two distinct optimization objectives:
DIP-VAE-I and DIP-VAE-II.
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2.3.2 Measuring disentanglement

Although a consensus has yet to be reached on a precise definition of disentangle-
ment, various quantitative metrics have been proposed in an attempt to measure
disentanglement based on the intuitive notions discussed earlier. Crucially, common
disentanglement metrics do not always agree with each other in practice (Locatello
et al., 2020c). While it is clear that some of them measure different notions than
others, not all discrepancies are easily explained, especially in terms of the different
results observed across datasets. Locatello et al. (2020a) present a thorough analysis
and discussion, and provide recommendations for practitioners.

A first distinction to be made is whether a metric relies on interventional data—where
we are allowed to perform interventions on the ground-truth factors of variation and
assess how these affect the representations—or observational data—where we must
estimate the statistical relationships between the learned representations and the
ground-truth factors given a set of (annotated) examples.

In the interventional setting, two properties that are typically assessed are consistency
and restrictiveness as defined by Shu et al. (2020), which measure the effect that
intervening on a single factor of variation (or group of factors) has on the representation.
In a consistent representation function, fixing a factor (or group of factors) and varying
the others corresponds to fixing a subset of dimensions in the representation. In a
restrictive representation function, changing a factor (or group of factors) with the
others fixed corresponds to varying only a subset of dimensions in the representation.

In the observational setting, the metrics presented in this section typically focus on
disentanglement and completeness in the sense of Eastwood and Williams (2018). Each
dimension of a disentangled representation captures at most one factor of variation
of the data: one factor may be encoded into multiple dimensions, but each of these
dimensions must not encode any other factor. Conversely, in a complete representation,
each factor of variation corresponds to at most one dimension in the representation:
different factors may be mixed in one representation dimension, but no factor may be
split over multiple dimensions.

The four properties outlined above are illustrated in Locatello et al. (2020a, Fig. 11).
In the following, we introduce some of the most popular disentanglement metrics.
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BetaVAE. The BetaVAE metric (Higgins et al., 2017a) is computed as the accuracy
of a classifier that predicts which factor of variation has been fixed in a batch of image
pairs. More specifically, for each batch, we choose a factor of variation i at random
and sample a batch of pairs (x1,x2) such that the ith factor has the same value in
x1 and x2. All pairs in the batch have the same factor fixed, but the value can differ
across pairs. For each image pair, we then compute the absolute value of the difference
between the encoded representations of the two images, and finally average over the
batch. The resulting vector:

1
B

B∑
n=1
|r(x(n)

1 )− r(x(n)
2 )| , (2.20)

where B is the batch size, is the input to the logistic regression model; the regression
target is the index i of the factor that has been fixed in all the pairs in the batch. Each
batch yields one data point for the downstream training of the regressor.

FactorVAE. Kim and Mnih (2018) discuss some weaknesses of the BetaVAE metric
and propose to address them with the FactorVAE score, computed as follows: We
first estimate the variance of each latent dimension and exclude unused dimensions
(those with a small variance) from all subsequent computations. Then, we generate
batches of samples where one randomly chosen factor is constant in each batch. For
each generated batch, we estimate the representation dimension that encodes the fixed
factor as the one that has the smallest variance (normalized by the global variance
across the entire training set). The estimated dimension is one training sample for
a majority vote classifier, and the (known) fixed factor is the corresponding target.
The classifier rule is then defined as taking for each latent dimension the ground-truth
factor that has the most votes from the training set.11 The FactorVAE score is then
the accuracy of this classifier on a held-out test set.

DCI. Eastwood and Williams (2018) argue that three distinct notions are relevant
in this context: disentanglement, completeness, and informativeness. All three metrics
are based on classifiers such as random forests or gradient boosted trees, one per
factor of variation, each trained to predict the ground-truth factor value from the data
representation r(x). Informativeness is simply the average accuracy of the classifiers

11This can be achieved by repeating the step above for many batches, and constructing a matrix of
size K ×D (with K the number of factors and D the latent space dimensionality) where each entry
denotes the number of times a given dimension was estimated to correspond to a specific factor.
For each dimension d, the factor with most votes is the argmax of the dth column.



24 2 Background

on a held-out test set. Disentanglement and completeness are based on the importance
matrix obtained by concatenating the feature importances of each classifier. This
matrix consists of the predictive importance of each representation dimension for each
ground-truth factor. Disentanglement is maximized when each latent dimension has
a positive importance for only one factor. Completeness measures the converse: it is
maximized when only one latent dimension has a positive predictive importance for any
given factor, i.e., each factor is only captured by one dimension in the representation.
This framework is named DCI after the three metrics introduced. For simplicity, we
will refer to the disentanglement metric defined by Eastwood and Williams (2018) as
DCI.

MIG. Chen et al. (2018) propose to measure disentanglement with the Mutual
Information Gap (MIG), based on the mutual information between each ground-truth
factor of variation and each latent dimension. The mutual information gap for one
ground-truth factor is defined as the difference between the highest and second-highest
mutual information, normalized by the estimated entropy of that factor. When a
factor is only represented by one latent dimension, this quantity is 1. The MIG score
is then obtain by averaging over all ground-truth factors. Note that this metric in fact
measures completeness (see p. 22).

Modularity and explicitness. Ridgeway and Mozer (2018) introduce modularity
and explicitness. Modularity is computed in a similar fashion to the MIG, except that
the gap is measured over factors of variation and for a given latent dimension, rather
than the opposite. Modularity intuitively corresponds to disentanglement as defined
in Section 2.1.4.2 and in Eastwood and Williams (2018). However, empirically, it
appears to measure a different notion of disentanglement than other metrics (Locatello
et al., 2020a, Section 6.1). Explicitness, on the other hand, measures how easily the
factors of variation can be predicted from the representation (loosely corresponding to
informativeness in Eastwood and Williams (2018)). It is computed for each factor of
variation as the ROC-AUC (area under the receiver operating characteristic curve) of
a logistic regression classifier trained to predict the ground-truth value of that factor.
The global explicitness is the average of this quantity over all factors of variation.

SAP. The Separated Attribute Predictability (SAP) score proposed by Kumar, Sat-
tigeri, and Balakrishnan (2018) is computed as follows: First, for each combination
of factor of variation and latent dimension, we train a regression model or a classifier
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(depending on whether the factor is continuous or discrete) to predict the factor from
the latent dimension. These result in a K×D score matrix containing the R2 score (for
continuous factors) or the accuracy (for discrete ones) for all combinations, computed
on a test set. For each factor of variation, we then compute the difference between
the highest and second-highest score. The SAP score is the average difference over
all factors of variation. This difference will be maximal when each factor is only
predictable from one dimension of the representation. Therefore, like the MIG, it
measures completeness in the sense of Eastwood and Williams (2018) (see also p. 22).

IRS. The Interventional Robustness Score (IRS) proposed by Suter et al. (2019)
performs interventions on the factors of variation and measures resulting changes in the
representation. The post-interventional disagreement in a representation component zk
due to a generative factor gj given a fixed value of gi is defined as the distance (e.g.,
the `2-norm) between the expectation of zk when we only fix gi and when we also fix
gj (with i 6= j). Intuitively, we fix gi and observe how robust zk is when gj changes.
The IRS score then measures the (normalized) expected maximum disagreement over
all factors of variation and their distributions, to assess the worst-case effect a change
in nuisance factors (such as gj) might have on the representation of gi. Note that the
interventional setting (see Pearl’s do-calculus (Pearl, 2009)) is not necessary when
there are no confounding correlations in the generative process, since in that case
interventions are equivalent to regular conditioning. Suter et al. (2019, Section 5) also
propose a method for estimating the IRS from purely observational data. Locatello
et al. (2020a, Section 6.1) note that the IRS is not consistently correlated with the
other disentanglement metrics.

2.3.3 Disentangling with limited supervision

Locatello et al. (2019b, Theorem 1) show that disentangled representation learning
is impossible without supervision or appropriate inductive biases. They support this
empirically in a large-scale experimental study, where they train the models presented
in Section 2.3.1 on several synthetic datasets for disentanglement learning. In this study,
they observe that hyperparameters and random seed appear to matter significantly more
than the model type. Furthermore, since unsupervised model selection is particularly
challenging, it is necessary to directly evaluate disentanglement with the ad hoc metrics
introduced in Section 2.3.2, which require ground-truth annotations of the factors of
variation.
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However, when some label information is available, it may be reasonable to use it
instead as a direct supervision signal for learning disentangled representations: When
a few observations are fully-labeled, this corresponds to the semi-supervised setting
(Khemakhem et al., 2020; Locatello et al., 2020c; Sorrenson, Rother, and Köthe, 2020;
but see also Klys, Snell, and Zemel (2018), Paige et al. (2017), and Reed et al. (2014)
for previous related work). In Träuble et al. (2021, Section 5), we explore a different
instantiation of semi-supervised learning (see Section 2.1.3) where representations
learned in an unsupervised fashion are adapted (or aligned) to reflect new ground-
truth information about the factors. On the other hand, when only weak labels are
available (typically for the entire dataset), we can exploit them to learn disentangled
representations by constructing a weakly supervised learning setting (Bouchacourt,
Tomioka, and Nowozin, 2018; Hosoya, 2019; Locatello et al., 2020b; Shu et al., 2020),
discussed below.

Weakly supervised disentanglement. We will briefly present here the weakly
supervised approach proposed by Locatello et al. (2020b) that we will employ in
Chapters 5 and 6 (Papers I and II). The key idea behind this method is that, while
the ground-truth factors of variation are provably not identifiable in the i.i.d. case,
they become identifiable given pairs of observations that differ in a subset of factors
of size k. This subset of changing factors may differ from pair to pair, and even the
number k of changing factors need not be fixed across all pairs. A possible justification
for this setting is that changes in natural environments are caused by changes in a few
factors of variation at a time (Földiák, 1991; Wiskott and Sejnowski, 2002), which is
related to the sparse mechanism shift hypothesis (Schölkopf, 2019; Schölkopf et al.,
2021). Unlike previous weakly supervised approaches that rely on group information
(e.g., knowing which factors are changing between two observations), the method by
Locatello et al. (2020b) only requires the number k of changing factors for each pair
of observations to be known. In fact, they propose a practical algorithm that relaxes
even this assumption by estimating k via a simple heuristic.

More concretely, the method computes approximate posterior distributions of the latent
variables for a pair of images (x(1),x(2)), and then selects the k latent dimensions that
differ the most in the posteriors of the two images, in terms of the KL divergence
DKL(qφ(zi |x(1)) ‖ qφ(zi |x(2))). We assume fully factorized approximate posteriors,
and zi denotes the ith dimension of z. The k dimensions with a large KL divergence
are considered to be changing between the two observations, while the others are
considered to be unchanged. Since the KL divergence introduces an unnatural ordering
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in the input pair, in Papers I and II we modify the original definition by Locatello
et al. (2020b) and use the symmetrized KL divergence (see Appendix B.1).

Then, given a symmetric averaging function a, the modified posterior distribution for
the latent dimension j, and for i ∈ {1, 2}, is defined as follows:

q̃
(i)
φ (zj |x(1),x(2)) =

{
qφ(zj |x(i)) if zj is inferred to be changing
a(qφ(zj |x(1)), qφ(zj |x(2))) if zj is inferred to be shared

such that the posteriors of the dimensions that are inferred to be unchanged between
the two inputs are collapsed into the same distribution. The averaging function forces
the approximate posterior of the shared latent variables to be the same for the two
observations. Locatello et al. (2020b) propose to use the averaging functions from
the Multi-Level VAE (ML-VAE) (Bouchacourt, Tomioka, and Nowozin, 2018) or from
Group-VAE (GVAE) (Hosoya, 2019), and call the resulting methods Ada-ML-VAE and
Ada-GVAE, respectively. In this dissertation, we will focus on Ada-GVAE (with the
minor difference that we use a symmetrized KL divergence, as mentioned above), where
the averaging function consists of averaging the means and variances of the (Gaussian)
posteriors. The objective function for the pair of observations is a straightforward
modification of the standard β-VAE objective:∑

i∈{1,2}

(
E
q̃

(i)
φ

(z |x(1),x(2)) log(pθ(x(i) |z))− βDKL

(
q̃

(i)
φ

(
z |x(1),x(2)) ∥∥∥ p(z)

))
(2.21)

and it is optimized by drawing samples (x(1),x(2)) from a non-i.i.d. data distribution
that accounts for the weak supervision assumptions discussed above.12

The authors empirically show that this approach (in both its variants) significantly
improves the disentanglement of the learned representations, and that model selection
can be successfully performed without explicit label supervision (i.e., the metrics from
Section 2.3.2 are not needed). We remark, however, that in practice it seems to be
necessary to show several pairs of observations with only one changing factor. This is
evident from the original publication itself (Locatello et al., 2020b), where half of the
training pairs are always differing only in one factor: when k > 1, the observations

12More formally, we can define the empirical joint distribution of each pair as follows:

q(x(1),x(2)) = q(x(1),x(2) |k)q(k) , (2.22)

where q(x(1),x(2) |k) selects a random pair of images that differ in k factors of variation and q(k)
is a distribution over k. In Chapters 5 and 6, we take k = 1 deterministically, or equivalently
q(k) = δ(k − 1).
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actually still have k = 1 with probability 0.5. We reached a similar conclusion while
running experiments in Papers I and II (Dittadi et al., 2021b; 2022b), where k = 1
often yielded perfectly disentangled factors, while even k = 2 (without forcing k = 1
for half of the pairs) resulted in a dramatic performance drop.

2.4 Object-centric representations

2.4.1 Motivation

In Section 2.3, we introduced disentanglement and discussed how disentangled rep-
resentations should be beneficial for downstream learning and generalization. The
underlying assumption is that the data comes from a structured generative process
with a few underlying factors of variation, and we wish to invert such a process by
disentangling these factors. Although there is currently no precise definition of disen-
tanglement, the consensus is that distinct factors of variation in the data should be
represented separately from each other.

In general, however, visual scenes may contain a variable number of objects, which
makes it less straightforward to define a plausible generative model of the data within
the framework introduced so far. For example, if we learn a disentangled representation
of visual scenes with one object such as the robotic setup in Papers I and II (Chapters 5
and 6; see Fig. 3.1), what should the representation of a scene with two objects be?
When a second object is placed into the arena, either the representation stops being
disentangled, or new factors of variation have to be introduced in order to represent
the new object. One might argue that, if the task were to learn a representation of
scenes where no more than one object is ever observed, it would be unreasonable to
expect a model to generalize to multiple objects. However, the issue persists even
when training on data with a variable number of objects: since there can always be
more objects than ever observed in the training distribution, a robust model must
have learned a mechanism to cope with the compositional structure of data that has
discrete object-like building blocks. It is unclear how this may be possible unless
the representation has a modular structure and its size adapts to the corresponding
observation.13

13Since the human working memory has a limited capacity and cannot hold more than a few objects
simultaneously (Cowan, 2001; Fukuda, Awh, and Vogel, 2010; Kibbe and Leslie, 2019; Miller, 1956;
Oberauer, 2019), we could also assume that the number of objects to be represented is bounded.
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A second motivation for learning object representations can be found in the successes of
symbolic artificial intelligence (AI) methods. Symbolic AI revolves around the idea that
the abstractions necessary for reasoning and intelligent behavior are best represented
by symbols. Historically, this approach has been at the basis of many of artificial
intelligence’s early successes, e.g., in automated planning (Fikes and Nilsson, 1971;
Ghallab, Nau, and Traverso, 2004), theorem proving (Gelernter, 1959; Newell and
Simon, 1956), and knowledge-based systems (Buchanan, Sutherland, and Feigenbaum,
1969). Despite their advantages, such as theoretical guarantees, interpretability, and
systematic generalization, symbolic AI methods still require symbolic inputs and often
rely on expert domain knowledge: Symbols have to be defined and grounded in the
real world—this is known as the symbol grounding problem (Harnad, 1990; Searle,
1980; Steels, 2008)—and knowledge, in terms of domain-specific facts and rules, must
be entered by humans into the system using a formal language (e.g., STRIPS (Fikes
and Nilsson, 1971) and PDDL (Drew, 1998) in automated planning, or description
logics (Baader and Nutt, 2003)).14 While this approach may be reasonable in some
cases, it is not acceptable in more general contexts that heavily involve learning and
low-level perception. Because of these limitations, symbolic AI research has fallen
out of favor in the deep learning era. However, many of these approaches are used
to this day as part of the standard computer science toolbox, and many argue that
symbol manipulation capabilities are necessary for overcoming the challenges of modern
machine learning in terms of systematic generalization (Battaglia et al., 2018; Greff,
Steenkiste, and Schmidhuber, 2020; Lake et al., 2017; Marcus, 2018; Marcus, 2003;
Pearl, 2018; Schölkopf et al., 2021).

On a similar note, machine learning methods have also been shown to benefit from
symbol-like observations and from explicitly incorporating structure in a connectionist
model. Recent successes can be found, e.g., in reinforcement learning (Ahmed et al.,
2021; Berner et al., 2019; Vinyals et al., 2019) or in physical reasoning (Battaglia et al.,
2016; Sanchez-Gonzalez et al., 2020) where structured observations are available via

However, here we focus on the general problem of representation learning in the multi-object setting,
without necessarily limiting ourselves to scenarios that are realistic for human learning.

14Although in some cases this knowledge can be learned, observations are typically still required to
be symbolic. This is the case, e.g., in action model learning for automated planning (Cresswell,
McCluskey, and West, 2013; Mourao et al., 2012; Pasula, Zettlemoyer, and Kaelbling, 2007; Walsh
and Littman, 2008; Yang, Wu, and Jiang, 2007; Zhuo et al., 2010). Note that, in Dittadi, Bolander,
and Winther (2018), we do in fact learn a simple neural transition model in Sokoban from non-
symbolic observations and successfully use it in a tree search algorithm for planning. However, (1)
this approach relies on assumptions on the transition function for the domain, and (2) having a
non-symbolic transition model prevents us from using optimized off-the-shelf planners that can
automatically derive powerful heuristics to significantly improve planning efficiency.
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the internal state of a simulator. This access to ground-truth structured data is often
necessary to solve complex tasks that require high-level skills such as reasoning and
planning. Looking forward, it will be crucial to relax the assumption that ground-truth
information about the state of the world is available, and learn to extract it instead.

Furthermore, there is evidence in cognitive psychology and neuroscience that humans
perceive the world in a structured way, in terms of objects and their interactions
(Spelke, 1990; Téglás et al., 2011; Wagemans, 2015). In fact, learning and reasoning
about objects has been shown to develop in humans at an early age (Baillargeon,
Spelke, and Wasserman, 1985; Dehaene, 2020; Spelke and Kinzler, 2007). Objects
constitute compositional building blocks for higher-level cognitive tasks, and naturally
enable systematic generalization outside of prior experiences (Dehaene, 2020).

Taking once again inspiration from human cognition, it has also been proposed that
artificial intelligence should take a hybrid, neuro-symbolic approach, where direct
sensory information is integrated with complex abstractions that allow for reasoning
and planning (Marcus, 2018, Section 5.2). In this context, symbol manipulation can
be performed by purely symbolic methods (Asai and Fukunaga, 2018; Ayton and Asai,
2021; Dittadi, Drachmann, and Bolander, 2021; Mao et al., 2019; Yi et al., 2018) or
within a connectionist framework (Battaglia et al., 2018; Evans and Grefenstette, 2018;
Greff, Steenkiste, and Schmidhuber, 2020; Pollack, 1990; Smolensky, 1990).

In general, object-centric representations are likely to play a crucial role in artificial
learning systems that are able to reason, plan, and generalize systematically beyond
their experience. In the remainder of this thesis, we will focus on how these representa-
tions are obtained from perceptual data alone, without any supervision, and regardless
of how higher-level cognitive functions that manipulate these representations may be
implemented. Note, however, that these issues are more generally related to the binding
problem in neural networks, i.e., the “inability of contemporary neural networks to
effectively form, represent, and relate symbol-like entities” (Greff, Steenkiste, and
Schmidhuber, 2020).

2.4.2 Object-centric learning

In object-centric representation learning, we assume the data comes from a structured
generative process based on discrete entities, their relationships, and a set of properties
defining such entities and relationships. While disentangled representation learning
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(Section 2.3) is concerned with learning a uniform collection of factors of variation
underlying the data, here we shift our focus to the compositional structure of data
in terms of building blocks that we call objects. In this dissertation, we will focus on
the most natural and intuitive case in the image domain, where objects are indeed
concrete objects that are visually perceived in the world. However, the term “object”
could be interpreted more generally as, e.g., spoken words or utterances, remembered
entities, or abstract concepts and categories (Greff, Steenkiste, and Schmidhuber, 2020,
Section 2.3).

The goal of object-centric learning is to obtain data representations that combine the
richness of neural representations with the compositionality of symbols: for example,
new objects can be created from unseen feature combinations, and objects can be
composed in novel ways without their features interfering with each other (this is related
to the “superposition catastrophe” (Bowers et al., 2014; Von Der Malsburg, 1986)).
Although, intuitively, object-centric learning is strictly related to disentanglement
learning—or may even be considered a special case thereof (Schölkopf et al., 2021,
Section 6)—the traditional disentanglement framework cannot be straightforwardly
applied in this case, as it assumes flat representations with a fixed vector format that
imposes an arbitrary ordering of the dimensions.

The typical setting in object-centric representation learning is to assume the generative
factors are a set of latent vectors {zi}Ni=1 where N is the number of objects and each
zi contains the representation of one object in the observation x. This separation
(Greff, Steenkiste, and Schmidhuber, 2020, Section 3.1.1) of object representations is
crucial for compositionality at the scene level. The number of objects could even be
treated as a (discrete) generative factor of variation that defines the number of factors
of variation for a given data point—e.g., in Dittadi and Winther (2019), a discrete
random variable controls the number of latent vectors (slots) representing objects in
each observation. Note that this slot-based approach to object separation is only one
of the possible ways to tackle the problem—see Greff, Steenkiste, and Schmidhuber
(2020, Section 3.3) for a discussion of more sophisticated strategies.

Although this thesis focuses on the common autoencoding setting for static images,
object representations can also be learned via contrastive (Kipf, Pol, and Welling, 2019)
or adversarial (Chen, Artières, and Denoyer, 2019b; Steenkiste et al., 2020) methods,
or as intermediate representations in a larger model that is trained on a supervised task
(Locatello et al., 2020d). Additional inductive biases can also be introduced through
data, e.g., exploiting temporal information by observing sequences or by interacting
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with an environment (Kabra et al., 2021; Kipf et al., 2021; Kipf, Pol, and Welling,
2019; Löwe et al., 2020).

In the slot-based case considered here, all object representations zi have a common
representational format achieved by weight sharing across slots (Greff, Steenkiste,
and Schmidhuber, 2020, Section 3.1.2). The shared format allows generalization
between objects when using the representations downstream. This should lead, e.g., to
the generalization of relations between objects independently of the context, which
is relevant for reasoning, planning, and other high-level tasks. Finally, following
the arguments in Section 2.3, it may be desirable for each object’s features to be
disentangled. This, together with the common representational format, is hypothesized
to be beneficial for generalization to unseen feature combinations (Greff, Steenkiste,
and Schmidhuber, 2020, Section 3.1.3).

2.4.3 Slot-based methods relevant for this thesis

In this section, we provide a brief overview of slot-based models and a high-level
description of the methods relevant for this thesis. This section is based on parts of
Paper III (Chapter 7) and its supplementary material (Appendix C).

Slot-based methods for object-centric learning can be categorized according to their
approach to object separation (Greff, Steenkiste, and Schmidhuber, 2020). In models
that use instance slots, each slot is used to represent a different part of the input.
This introduces a routing problem, because all slots are identical but they cannot all
represent the same object, so a mechanism needs to be introduced to allow slots to
communicate with each other. In models based on sequential slots, the representational
slots are computed in a sequential fashion, which solves the routing problem and
allows to dynamically change the number of slots, but introduces dependencies between
slots. In models based on spatial slots, a spatial coordinate is associated with each
slot, introducing a dependency between slot and spatial location. In this work, we
focus on four scene-mixture models as representative examples of approaches based on
instance slots (Slot Attention), sequential slots (MONet and GENESIS), and spatial
slots (SPACE). What follows is a high-level overview of these four models.

MONet. In MONet (Burgess et al., 2019), attention masks are computed by a recur-
rent segmentation network that takes as input the image and the current scope, which
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is the still unexplained portion of the image. For each slot, a variational autoencoder
(the component VAE) encodes the full image and the current attention mask, and
then decodes the latent representation to an image reconstruction and mask. The
reconstructed images are combined using the attention masks (not the masks decoded
by the component VAE) into the final reconstructed image. The reconstruction loss
is the negative log-likelihood of a spatial Gaussian mixture model (GMM) with one
component per slot, where each pixel is modeled independently. The overall training
loss is a (weighted) sum of the reconstruction loss, the KL divergence of the component
VAEs, and an additional mask reconstruction loss for the component VAEs.

GENESIS. Similarly to MONet, GENESIS (Engelcke et al., 2020) models each
image as a spatial GMM. The spatial dependencies between components are modeled
by an autoregressive prior distribution over the latent variables that encode the mixing
probabilities. From the image, an encoder and a recurrent network are used to compute
the latent variables that are then decoded into the mixing probabilities. The mixing
probabilities are pixel-wise and can be seen as attention masks for the image. Each
of these is concatenated with the original image and used as input to the component
VAE, which finds latent representations and reconstructs each scene component. These
are combined using the mixing probabilities to obtain the reconstruction of the image.
While in MONet the attention masks are computed by a deterministic segmentation
network, GENESIS defines an autoregressive prior on latent codes that are decoded
into attention masks. GENESIS is a proper probabilistic generative model, and it is
trained by maximizing a modification of the ELBO introduced by Rezende and Viola
(2018), which adaptively trades off the log-likelihood and KL terms in the ELBO.

Slot Attention. As our focus is on the object discovery task, we use the Slot
Attention autoencoder model proposed by Locatello et al. (2020d). The encoder
consists of a CNN followed by the Slot Attention module, which maps the feature map
to a set of slots through an iterative refinement process. At each iteration, dot-product
attention is computed with the input vectors as keys and the current slot vectors
as queries. The attention weights are then normalized over the slots, introducing
competition between the slots to explain the input. Each slot is then updated using a
GRU that takes as inputs the current slot vectors and the normalized attention vectors.
After the refinement steps, the slot vectors are decoded into the appearance and mask
of each object, which are then combined to reconstruct the entire image. The model is
optimized by minimizing the MSE reconstruction loss. While MONet and GENESIS
use sequential slots to represent objects, Slot Attention employs instance slots.
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SPACE. Spatially Parallel Attention and Component Extraction (SPACE; Lin et
al., 2020b) combines the approaches of scene-mixture models and spatial attention
models. The foreground objects are segregated using bounding boxes computed
through a parallel spatial attention process. The parallelism allows for a larger number
of bounding boxes to be processed compared to previous related approaches. The
background elements are instead modeled by a mixture of components. The use of
bounding boxes for the foreground objects could lead to under- or over-segmentation
if the size of the bounding box is not tuned appropriately. An additional boundary
loss tries to address the over-segmentation issue by penalizing splitting objects across
bounding boxes.

2.4.4 Measuring object separation

In this section, we define the segmentation metrics which we use in this dissertation to
measure object separation. This section is based on the supplementary material for
Paper III (see Appendix C).

Adjusted Rand Index (ARI). The Adjusted Rand Index (ARI) (Hubert and
Arabi, 1985) measures the similarity between two partitions of a set (or clusterings).
Interpreting segmentation as clustering of pixels, the ARI can be used to measure the
degree of similarity between two sets of segmentation masks. Segmentation accuracy is
then assessed by comparing ground-truth and predicted masks. The expected value of
the ARI on random clustering is 0, and the maximum value is 1 (identical clusterings
up to label permutation). As in prior work (Burgess et al., 2019; Engelcke et al., 2020;
Locatello et al., 2020d), we only consider the ground-truth masks of foreground objects
when computing the ARI. Below, we define the Rand Index and the Adjusted Rand
Index in more detail.

The Rand Index is a symmetric measure of the similarity between two partitions of a
set (Hubert and Arabi, 1985; Rand, 1971; Wagner and Wagner, 2007). It is inspired by
traditional classification metrics that compare the number of correctly and incorrectly
classified elements. The Rand Index is defined as follows: Let S be a set of n elements,
and let A = {A1, . . . , AnA} and B = {B1, . . . , BnB} be partitions of S. Furthermore,
let us introduce the following quantities:

• m11: number of pairs of elements that are in the same subset in both A and B,
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• m00: number of pairs of elements that are in different subsets in both A and B,

• m10: number of pairs of elements that are in the same subset in A and in different
subsets in B,

• m01: number of pairs of elements that are in different subsets in A and in the
same subset in B.

The Rand Index is then given by:

RI(A,B) =
m11 +m00

m11 +m00 +m10 +m01
=

2(m11 +m00)
n(n− 1) (2.23)

and quantifies the number of elements that have been correctly classified over the total
number of elements.

The Rand Index ranges from 0 (no pair classified in the same way under A and B)
to 1 (A and B are identical up to a permutation). However, the result is strongly
dependent on the number of clusters and on the number of elements in each cluster.
If we fix nA, nB , and the proportion of elements in each subset of the two partitions,
then the Rand Index will increase as n increases, and even converge to 1 in some cases
(Fowlkes and Mallows, 1983). The expected value of a random clustering also depends
on the number of clusters and on the number of elements n.

The Adjusted Rand Index (ARI) (Hubert and Arabi, 1985) addresses this issue by
normalizing the Rand Index such that, with a random clustering, the metric will be
0 in expectation. Given the same conditions as above, let ni,j = |Ai ∩Bj |, ai = |Ai|,
and bi = |Bi|, with i = 1, . . . , nA and i = 1, . . . , nB . The ARI is then defined as:
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∑
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which is 0 in expectation for random clusterings, and 1 for perfectly matching partitions
(up to a permutation). Note that the ARI can be negative.

Segmentation covering metrics. Segmentation Covering (SC) (Arbelaez et al.,
2010) uses the intersection over union (IOU) between pairs of segmentation masks
from the sets A and B. How the segmentation masks are matched depends on whether
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we are considering the covering of B by A (denoted by A→ B) or vice versa (B → A).
We use the slightly modified definition by Engelcke et al. (2020):

SC(A→ B) = 1∑
RB∈B |RB |

∑
RB∈B

|RB | max
RA∈A

iou(RA, RB) , (2.25)

where |R| denotes the number of pixels belonging to mask R, and the intersection over
union is defined as:

iou(RA, RB) = |RA ∩RB |
|RA ∪RB |

. (2.26)

While standard (weighted) segmentation covering weights the IOU by the size of the
ground truth mask, mean (or unweighted) segmentation covering (mSC) (Engelcke
et al., 2020) gives the same importance to masks of different size:

mSC(A→ B) = 1
|B|

∑
RB∈B

max
RA∈A

iou(RA, RB) , (2.27)

where |B| denotes the number of non-empty masks in B. Since a high SC score can still
be attained when small objects are not segmented correctly, mSC is considered to be
a more meaningful and robust metric across different datasets (Engelcke et al., 2020).

Note that neither SC nor mSC are symmetric: Following Engelcke et al. (2020), we
consider A to be the predicted segmentation masks and B the ground-truth masks
of the foreground objects. As observed by Engelcke et al. (2020), both SC and mSC
penalize over-segmentation (segmenting one object into separate slots), unlike the ARI.
Both SC and mSC take values in [0, 1].



CHAPTER3
Study on representation learning

in a robotic setting

After having introduced the necessary background in Chapter 2, we briefly outline the
main contributions of this thesis. Here we take a more focused approach than in the
original papers, and discuss the key motivations, conclusions, and limitations of the
studies.

In this chapter, we introduce the motivation and experimental setting of Papers I and II
(Chapters 5 and 6), summarize a few main results, and discuss the key takeaways. The
most relevant background for this chapter is in Sections 2.1 to 2.3. We take a similar
approach in Chapter 4, which is concerned with the experimental study in Paper III
(Chapter 7).

3.1 Introduction and study design

In Papers I and II (Chapters 5 and 6), we focus on representation learning for down-
stream tasks in the context of robotics. We scale disentangled representation learning to
a robotic setting and analyze the link between properties of the learned representations
and different flavors of generalization in downstream tasks, spanning from ground-truth
factor prediction to robotic pushing.

The setting is a simulated robotic platform consisting of a bowl-shaped stage with a
flat floor, a monochromatic cube with a range of possible colors, and a robotic arm
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with three degrees of freedom (Fig. 3.1, left). We consider two tasks: reaching the cube,
or pushing it to a given target location. The platform has a real-world counterpart
which we use for sim-to-real generalization experiments.1 Images from the real-world
platform are shown in the right panel in Fig. 3.1.

3.1.1 Dataset

Our first contribution, introduced in Paper I (Chapter 5), is a new annotated dataset for
learning and evaluating disentangled representations in the robotic setting introduced
above. A main advantage of this dataset is that it has a direct downstream application
to real-world robotics. This has the beneficial side effect that on this dataset it is more
difficult to learn useful representations that accurately capture the underlying structure
of the data. Consequently, our dataset also provides a valuable testbed to challenge
state-of-the-art methods for disentangled representation learning.

There are several aspects to the difficulty of our dataset:

1. It has a higher resolution (128x128) than most other datasets commonly used
in disentangled representation learning (Fidler, Dickinson, and Urtasun, 2012;
Gondal et al., 2019; Higgins et al., 2017a; Kim and Mnih, 2018; Reed et al.,

Figure 3.1. Random samples from the simulated (left) and real (right) dataset proposed in
Paper I (Dittadi et al., 2021b).

1Our setting is derived from a more general setup with three robotic fingers that enables studying a wide
range of robotic tasks from reaching to dexterous manipulation. This corresponds to CausalWorld
(Ahmed et al., 2021) in simulation and the TriFinger robot (Wüthrich et al., 2020) in the real world.
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2015), with the exception of SmallNORB (LeCun, Huang, and Bottou, 2004)
that has the same resolution. Note that in this comparison we only consider
datasets with precise annotations of the factors of variation: while there are
datasets with labeled factors, such as CelebA (Liu et al., 2015), these have only
qualitative annotations and, therefore, do not allow for quantitative evaluations
or fine-grained control over the factors.

2. Our dataset has seven fully-annotated, fine-grained factors of variation; other
datasets have fewer, except for MPI3D (Gondal et al., 2019) that also has seven.

3. Some of these factors of variation have correlations due to the interactions of the
finger with the cube and the stage floor: the finger cannot be completely extended
vertically and it cannot go through the cube. In another work not included in this
dissertation (Träuble et al., 2021), although with simpler correlation structures,
we show theoretically and empirically that disentangled representation learners
might struggle when some factors of variation are correlated. However, we observe
that the weakly supervised approach introduced in Section 2.3.3, which we also
use in Papers I and II, may resolve this issue.

4. Some factors of variation have a significantly larger impact on the pixel-wise
reconstruction loss. This could make it challenging to find the “sweet spot”
for regularization strength in autoencoder-based disentanglement learners. In
fact, we observe that the cube rotation—the factor with the smallest impact—
is sometimes not captured by the representations when the regularization is
too strong. See the related discussion in Section 2.3.1, in the paragraph that
introduces AnnealVAE (p. 19).

5. Unlike most previous datasets, this dataset presents heavy occlusions. E.g.,
the tip of the finger may be hidden by the cube (or even exit the field of view,
although this is not technically an occlusion), or the cube might be almost entirely
hidden by the finger (see Fig. 3.1).

6. The factors of variations in the dataset are significantly more fine-grained than
other datasets. This results in over 1.5 billion possible combinations of the seven
factors, while the largest among the common disentanglement datasets only has
one million combinations.

7. The fine granularity of the factors implies that our representations are trained on
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a rather small portion (less than 0.1%) of the space of possible combinations. By
contrast, previous works on other datasets report training on the entire datasets,
i.e., on all factor combinations.

A further advantage of our dataset is that it enables sim-to-real evaluation: in addition
to one million annotated images of the simulated platform, it also includes over 1,800
annotated images of the real platform (Fig. 3.1, right).

3.1.2 Learning representations

To learn compact representations of simulated camera observations from our robotic
platform, we choose the β-VAE for its simplicity. As discussed in Section 2.3.1, this is
an extension to the variational autoencoder (VAE) that allows for the modulation of
the information bottleneck capacity, thereby encouraging disentanglement. In addition
to training β-VAEs in the standard unsupervised setting, we also use the Ada-GVAE
approach proposed by Locatello et al. (2020b) to introduce weak supervision in the
training procedure (see Section 2.3.3).

As mentioned above, this dataset is challenging for common disentanglement methods,
which in our preliminary experiments failed to reconstruct the input images. For
this reason, we increased the encoder and decoder depths and ran a hyperparameter
sweep to determine the best configuration (including depth and width of the networks,
presence and parameterization of residual connections, weight initialization of the
networks, batch normalization, and dropout). The final architecture is over 4 times as
deep as standard convolutional autoencoders for disentanglement learning (Locatello
et al., 2020a), and it has over 20 times as many parameters (see Appendix A.1).
Proposing a practical way to scale up disentanglement learning to more challenging
settings constitutes our second contribution.

3.1.3 Study on generalization in downstream tasks

As a third contribution of Paper I (Chapter 5), we perform a reproducible large-scale
study in which we train 1,080 variational autoencoders varying several hyperparameters,
including supervision method (unsupervised or weakly supervised), bottleneck capacity,
and presence of noise in the input. The latter was an attempt—which turned out
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to be relatively successful—to learn encoders that would be more robust to strong
distribution shifts such as sim-to-real. Further details on the hyperparameter search
are presented in Section 5.3 and Appendix A.1.

In both Papers I and II, we leverage the learned representation functions (the encoders)
to learn downstream tasks, and investigate the relationship between representation
properties and performance on downstream tasks, with a particular focus on out-of-
distribution generalization. The representation functions are pretrained and frozen,
and a downstream model is trained to solve a specific task given the (learned) data
representation as input. In Paper I, the task is to predict the ground-truth factors of
variation; in Paper II, the task is either to reach the cube with the robotic finger, or to
move it to a given location.

We formulate a framework for measuring generalization based on two scenarios:

• OOD1 : The downstream model is evaluated out of distribution with respect to
its training distribution, but the representation functions are still in distribution.
This means that the representation r(x) of an input x in the OOD1 set will be as
good as representations of data in the downstream models’ training distribution.
Therefore, here we purely test the generalization of downstream models trained
on representations with different structures and properties.

• OOD2 : The downstream model is evaluated out of distribution with respect to
both its own training distribution and that of the representation function. The
key observation here is that, since the representation functions are deep neural
networks, they are prone to well-known generalization issues. Therefore, for a
data point x in the OOD2 set (when the encoders are out of distribution), the
corresponding representation r(x) may not faithfully represent x.

Although often overlooked, this distinction is crucial when discussing generalization
in representation learning, as it allows us to separately study (1) the structure and
properties of representations, and (2) the generalization of representation functions.

For the sake of clarity, we now briefly introduce the concrete distribution shifts studied
in Chapters 5 and 6 in the simulated setting.2 We treat the cube color as a nuisance

2Although we also consider sim-to-real shifts, these cannot be precisely characterized in terms of
factors of variations of the dataset. This could be solved, e.g., by introducing a binary factor of
variation that denotes simulation or real world, or by describing simulated and real settings via a
set of complex factors of variation, such as surface characteristics and lighting conditions. This is,
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factor (see Section 2.1.1) and consider distribution shifts affecting only this factor. In
our setup, the cube color can take 12 possible values (with uniformly distributed hue
in the HSV space, and maximum saturation and value). As shown in Fig. 3.2, we train
the representation functions on 8 of these colors, chosen at random before running the
study, and kept fixed. The held-out colors are used for OOD2 evaluation, i.e., with the
representation function out of distribution. The downstream tasks—e.g., predicting
the cube’s position, or pushing the cube to a target location—are then trained on a
subset of the colors that were used when training the representations (the 4 leftmost
colors in the example in Fig. 3.2). When evaluating on the OOD1 colors, we gauge the
generalization abilities of the downstream task, since in this case the representations
should be accurate. When evaluating on the OOD2 colors, by contrast, we measure
the generalization of the encoders as well. In Chapter 5, we consider three different
splits of the VAE training colors. The “extrapolation” split shown in Fig. 3.2 (from
downstream training colors to OOD1 colors) is the one we focus on in Chapter 6.

3.2 Key findings on disentanglement and factor prediction

In this section, we present and discuss the main results from Paper I on learning
disentangled representations and solving downstream factor prediction tasks.

First, we demonstrate that the proposed architecture allows VAEs to reconstruct all
relevant details of input images (see input–reconstruction pairs in Fig. 3.3(a)). This
suggests that the latent representations in the trained models accurately capture all
relevant information in the data (see Section 2.1.4.1). Arguably, this is necessary if
we want to draw meaningful conclusions about the usefulness of representations with
diverse structures (see Section 2.1.4.2): if relevant information is not retained by some

Figure 3.2. Illustration of the cube colors in the studies from Papers I and II.

however, out of the scope of this dissertation and the research papers it is based on.
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(a) Inputs and reconstructions. (b) Random samples.

Figure 3.3. Input–reconstruction pairs and random samples of a VAE from our study.

representation functions, these will likely be less useful regardless of the structure of
the information they do retain. In addition, although generative modeling is not a goal
of this research effort, we remark that most of the learned models can also sample new
high-quality images, as shown in Fig. 3.3(b).

Another key finding is that weak supervision as defined in Ada-GVAE (see Section 2.3.3)
can successfully learn fully disentangled representations, as seen by visual inspection
and from the remarkably high DCI Disentanglement scores (often above 0.99). The
failure cases (when representations are not fully disentangled) typically occur when the
latent space regularization is too strong and therefore one factor—the cube rotation,
which contributes the least to the reconstruction error—is ignored (see discussion in
Section 2.3.1). Conveniently, this allows for model selection in the weakly supervised
case, since the entangled models are very likely to have worse unsupervised metrics
(reconstruction loss and ELBO). Even in the cases where one factor of variation
is ignored, those that are not ignored are often disentangled. In contrast, none
of the unsupervised models learn disentangled representations, and almost all of
them have lower DCI and MIG scores than any weakly supervised model (of the
four disentanglement metrics considered in this study,3 these are the one that we
empirically observed, via visual inspection, to better correspond to our intuitive notion
of disentanglement).

Thanks to this combination of unsupervised and weakly supervised approaches, we
3We can only compute observational metrics (DCI Disentanglement, MIG, Modularity, and SAP) on
this dataset, as opposed to interventional metrics (see Section 2.3.2), because it does not provide
interventional capabilities (it consists of a fixed set of images that is a rather small subset of all
possible combinations of the factors of variation).
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learn a collection of encoders that extract highly diverse representations. This allows
us to draw sound conclusions from the observed relationships between relevant metrics.
We will now focus in particular on disentanglement metrics and downstream factor
prediction: How does the disentangling capability of the upstream representation
function r affect the OOD performance of a downstream model that predicts the
ground-truth factors of variation? A key insight from our findings—which are discussed
below—is that the effect of disentanglement on generalization is not as straightforward
as typically assumed.

First, as discussed above, it is crucial to define in what sense we are measuring gener-
alization: If the representation function is OOD, the resulting representations will not
be disentangled—in fact, they may not even be faithful to the data. For example, if
the cube color in the input image never appeared in the VAE’s training distribution, it
is arguably unreasonable to expect the encoder to correctly interpret the unseen color.
Indeed, in our experiments, encoders are typically unreliable out of distribution, as
they sometimes fail at inferring even in-distribution factors. For example, when the
color is OOD, the cube rotation is very often inferred incorrectly (see Fig. 3.4). This
appears to hold regardless of the degree of disentanglement, which suggests that any
disentanglement capabilities are lost when the data distribution shifts.

Second, when the downstream model is an MLP, the degree of entanglement does
not seem to matter at all. This is not surprising, since an MLP can be expected

Figure 3.4. Each pair shows an OOD2 input (left) and reconstruction (right) by a VAE with
perfectly disentangled factors of variation. The VAE was trained without input noise. Since
the cube colors are out of distribution with respect to the encoder’s training distribution, the
mapping from an input image to a latent representation is not well defined. The encoder is
especially likely to fail if the input color is not “similar enough” to a color in the training
distribution (e.g., when the cube is yellow). Unsurprisingly, the generative model always
reconstructs colors that were present in the training set.
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to disentangle factors of variation that are entangled in a representation. However,
we observe a surprising phenomenon in the OOD1 case (i.e., when the encoder is
not OOD): when the representation function perfectly disentangles the factors, the
downstream models reliably attain a very low error on the task, while in other cases we
observe a significant variance (see Fig. 5.4, left). On the other hand, disentanglement
is not correlated with the OOD2 generalization of a downstream MLP, i.e., when the
encoder is OOD (see Fig. 5.5).

In summary, in our experiments disentanglement appears to matter only for OOD1
generalization, and what matters is mostly whether the representation is fully disentan-
gled or not. A possible explanation is that, when the prediction target is a (relatively
simple) non-linear function of a single input feature, the optimization easily and reliably
converges to the optimal solution where all other input features are ignored, including
those that might be OOD at test time.

Another interesting observation is that adding random noise to the input of the rep-
resentation function during training significantly improves its generalization, both in
simulation (OOD cube colors) and to the real world. This is not entirely surprising, as
noisy inputs have been shown theoretically and empirically to improve the robustness
of neural networks. However, the extent of the improvement is undoubtedly significant,
as seen qualitatively by comparing Fig. 3.4 and Fig. 3.5. Note that this falls into
the OOD2 generalization category, and is particularly useful in practice in sim-to-real
scenarios—Fig. 3.6 shows examples of the effectiveness of input noise for zero-shot
sim-to-real generalization. Quantitative results are presented in Section 5.5 (Fig. 5.6).

3.3 Study on robotic tasks

In Paper II (Chapter 6), we investigate the role of pretrained representations on the
performance and generalization of downstream reinforcement learning agents in the
robotic setup introduced earlier, both in simulation and in the real world. To the
best of our knowledge, this is the first systematic and extensive account of the OOD
generalization of downstream reinforcement learning agents in robotics, and how this
generalization is affected by characteristics of the upstream pretrained representation
functions. In this section, we briefly outline the experimental setup for this study. We
then discuss a few key insights in Section 3.4, leaving a more extended exposition for
Chapter 6.
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Figure 3.5. Each pair shows an OOD2 input (left) and reconstruction (right) by a VAE
with perfectly disentangled factors of variation. The VAE was trained with input noise.
Unsurprisingly, the generative model always reconstructs colors that were present in the
training set. However, unlike in the noiseless case in Fig. 3.4, the other factors of variation
are inferred relatively well.

In this study, we evaluate distribution shifts within a framework that is analogous
to the one in Paper I. However, the experimental study in this robotic setting is
significantly more complex and demanding:

• The downstream task is considerably more challenging: While predicting one
factor of variation involves training a downstream model on 10k samples for a
few thousand steps, we train our reinforcement learning policies for 3M steps for
pushing.

• While in the simple prediction task we can precompute the representations of the
entire training and test sets, in the reaching and pushing tasks we must encode
each input image at runtime. This is an additional source of computational cost,
besides the mere fact that the task is harder.

• Since the objective function in reinforcement learning is typically based on
some form of expected cumulative reward, its gradients with respect to the
model parameters are not computable in closed form and have to be estimated
(Mohamed et al., 2020). Gradients in reinforcement learning are thus generally
harder to estimate than in supervised learning tasks such as factor prediction,
where the training loss is directly differentiable with respect to all parameters.
This, together with the fact that the tasks are harder in the first place, require
us to use many (10 for pushing, 20 for reaching) random seeds for downstream
RL training. This further increases the already high overall computation time by



3.3 Study on robotic tasks 47

(a) Trained without noise.

(b) Trained with noise.

Figure 3.6. Each pair shows a real-world image input (left) and its reconstruction by trained
VAEs (right). This is an OOD2 scenario. The model trained with input noise (b) infers the
ground-truth factors of variation significantly more accurately than the model trained without
noise (a).

one order of magnitude.

Thus, we opt to reduce the computational burden by limiting the number of pretrained
representations, and use only a subset of the models trained for Paper I.

We train reinforcement learning policies with SAC (Haarnoja et al., 2018b) to either
reach the cube in the arena or push it to a given target location. For reaching, we
measure success by the fractional progress made by the tip of the robot finger from
its initial position to the surface of the cube. For pushing, we measure the fractional
volumetric overlap between the cube and the goal (which is defined as a cube of the
same size).

We select a subset of the representation functions from Paper I and train 11,520
downstream policies in total. For each encoder, we use 20 random seeds for training
downstream policies on reaching, and 10 seeds on pushing. Since disentanglement is
one of the central themes of this study, we also explore the effect of L1 regularization
on the input, in an attempt to encourage the downstream policies to disregard nuisance
factors and therefore be more robust to distribution shifts.
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The input to the downstream policies is the concatenation of: (1) the input rep-
resentation r(x), where r is the frozen, pretrained representation function, (2) the
ground-truth angles and velocities of the robot joints, and (3) the target position and
orientation of the cube, in the pushing task. The cube’s position and orientation are
thus the only pieces of information that must be contained in r(x), since all other
relevant quantities are available in the ground-truth state observation. Despite this,
solving these tasks proved to be difficult—in fact, they can be challenging even from
complete ground-truth information (Ahmed et al., 2021).

3.4 Key findings on robotic tasks

One of the motivations for introducing the annotated robotics dataset in Paper I was to
scale up disentangled representation learning to more realistic settings and eventually
evaluate its usefulness on more relevant downstream tasks than factor prediction on
toy datasets, such as reinforcement learning on a robot. In Paper II, we deliver on
this promise. However, since the results on disentanglement are mostly negative, we
expand our study to investigate more in general how the generalization of downstream
policies relates to a variety of metrics that can be computed on the representations
before training the policies.

We start by analyzing the effect of disentanglement on the generalization of the trained
policies. In Paper I, we observed that disentanglement is not beneficial in the OOD2
scenario, but it can be helpful for OOD1 generalization (i.e., when the encoder is in
distribution) only when the representations are perfectly disentangled. In Paper II, on
the other hand, we find the role of disentanglement to be negligible: it appears not
to be beneficial even when the encoder is kept in distribution and even if it perfectly
disentangles the factors of variation.

As in Paper I, we test the encoder’s robustness (OOD2 generalization) by evaluating
the policies on unseen cube colors in simulation, as well as on the real robot. Here we
also test on an unseen shape (a sphere) both in simulation and in the real world. In
simulation, where it is feasible to evaluate a large number of policies on hundreds of
episodes each, we observe that training the representation functions with input noise
significantly improves OOD2 generalization, which is in line with the conclusion we
reach on the simpler prediction setting of Paper I. In particular, some of the policies
trained in simulation generalize surprisingly well zero-shot to the real robot, without
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any fine-tuning or domain randomization during training. Crucially, the best policies
in the real-world setting tend to be the best ones in the OOD2 setting in simulation, for
example with unseen cube colors. Therefore, we can use a policy’s OOD2 performance
in simulation to predict how it will perform on the real robot.

Perhaps the most valuable takeaway from this study, however, is that we can interpret
the out-of-distribution performance on the simple downstream tasks from Paper I as
generalization scores, to be added to the collection of representation metrics. Thus,
if we are interested in a specific type of generalization for downstream policies—e.g.,
corresponding to a specific training distribution and test-time distribution shift—we
can simply replicate a similar train/test scenario on a simple prediction task and expect
the OOD performance on such a task to be predictive of the policies’ OOD performance.
We can use the toy task as a proxy task to predict the performance of downstream
models on a target task. Notably, the distribution shift need not be exactly the same
in the proxy and target tasks: for example, the results on substantially different OOD2
shifts—OOD cube colors in simulation, OOD shape in simulation, and sim-to-real
shift—appear to be correlated.

Let us consider a concrete example to highlight the relevance of these results. Assume
we have trained a large number of representation functions to be used as vision
backbones for downstream reinforcement learning. We train downstream policies in
simulation and deploy them on a real robot. It is reasonable to assume that we should
train many policies for each representation function, varying hyperparameters and
random seed. Fortunately, our study suggest that we can leverage simple proxy tasks
to drastically reduce the number of policies that need to be trained: First, we train
factor prediction models for all representation functions and evaluate them on images
from the real robot. Then, we select the encoders with the best OOD performance
and run a hyperparameter sweep for the policies using only this subset of encoders as
upstream models. Note that, since the OOD2 performance of the policies in simulation
and in the real world are also correlated, we could then further reduce the cost of
deploying multiple policies to the real robot by filtering out the ones that do not
perform particularly well on the simulated OOD2 setting. However, the most impactful
advantage is arguably the possibility to pre-select representations that are more likely
to lead to robust downstream policies.

Finally, although not discussed in the paper, it would not be surprising if these results
held beyond reinforcement learning in robotics. In fact, we could hypothesize that
the correlations between the performances on proxy and target tasks may primarily
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depend on how similar the downstream models and tasks are.

Regarding the similarity of downstream models, in Paper II we indeed observe signif-
icant correlations only when the downstream model for factor prediction is an MLP,
like the neural networks in the RL agents. Note that this is probably a soft constraint:
First, each RL agent actually consists of multiple MLPs (the policy, value, and Q
networks), therefore a direct comparison is not straightforward. Second, in Paper I we
observe that the behaviors of MLPs with up to 3 hidden layers are similar to each other,
but different from gradient boosted trees, random forests, and k-nearest neighbors.

The similarity of the proxy and target downstream tasks can probably be expressed
in terms of the mutual information between the prediction targets of the two tasks.
Assume that the data is defined by a set of ground-truth (generative) factors G, and
that solving the proxy task Tp and the target task Tt requires information about
two subsets Gp,Gt ⊂ G of factors.4 We might then observe that models for Tp that
are downstream of a representation function r tend to exhibit some properties, e.g.,
good in-distribution performance or robustness to a specific kind of distribution shift.
Intuitively, if Gp and Gt are “similar”, we may expect the same properties to hold
to some extent for models that are trained downstream of r to solve task Tt.5 Note
that, if the tasks are entirely unrelated (i.e., Gp ∩ Gt = ∅), some properties may still
be consistent: for example, if r is robust to distribution shifts, downstream models
trained on Tp and Tt might both exhibit good OOD2 performance; and if r is not
robust, both downstream models will probably not perform well in an OOD2 setting.
Although these relationships are not straightforward to characterize, we found some
empirical evidence that partially supports this hypothesis: The OOD1 performance of
the policies is particularly correlated with the OOD1 accuracy when predicting the
factors that are not included in the ground-truth state, i.e., those that necessarily have
to be inferred from the learned representation (see Fig. 6.4), while the correlation with
the prediction performance of other factors is significantly milder. A similar result
holds for OOD2 scenarios.

4For simplicity we could refer to the factors by some arbitrary indices such that G ⊂ N.
5Denoting by yp and yt the prediction targets of the proxy and target tasks, respectively, we could
attempt to formalize this notion using the mutual information I(yp; yt). In reinforcement learning,
for example, the prediction target might be the reward (or expected discounted return) for a
state–action pair or the action probabilities of an optimal stochastic policy.



CHAPTER4
Study on object-centric

representations

In this chapter, we motivate and outline the design of the study in Paper III, and discuss
its main results. Further details can be found in the paper (Chapter 7) and in the
corresponding supplementary material (Appendix C). The most relevant background
for this chapter is in Sections 2.1 and 2.4.

4.1 Introduction

Compositional generalization is widely recognized as a fundamental issue in deep learn-
ing (Greff, Steenkiste, and Schmidhuber, 2020; Lake et al., 2017). The object-centric
learning literature is mainly concerned with proposing new methods, while assuming
that learning about objects may (at least partially) solve the issue of generalization. In
Paper III (Dittadi et al., 2022a), we investigate this claim via a systematic empirical
study on unsupervised object-centric learning, with a focus on image data.

4.1.1 Overview of the study design

We start by formulating three hypotheses about the unsupervised learning of object-
centric representations, roughly following assumptions made in previous work but
largely left implicit. In summary, an encoder that separates objects should:
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1. Separately represent each object’s properties in a complete and accurate manner,
and therefore be useful for arbitrary downstream tasks.

2. Be robust to distribution shifts affecting a single object per image, in the sense
that the representations of all other objects should still be reliable, even if the
affected object has out-of-distribution properties.

3. Be robust to distribution shifts globally affecting the input, such as introducing
occlusions, cropping the input image, or increasing the number of objects beyond
the maximum number observed in the training distribution.

To investigate these hypotheses, we design a systematic experimental study in which
we train and evaluate object-centric learning models on multi-object datasets that are
annotated with segmentation masks and object properties.

Models. We focus on slot-based models, a popular approach for unsupervised object-
centric learning (see Section 2.4.3), but we include models covering different approaches
to object separation: instance slots (Slot Attention), sequential slots (MONet and GEN-
ESIS), and spatial slots (SPACE). Moreover, we train standard variational autoencoders
(Section 2.2) in an attempt to gauge the downstream usefulness of non-object-centric
representations (see Section 4.1.2).

Datasets. We train and evaluate the models on five multi-object datasets that have
been used in the literature as benchmarks for object-centric models. All of them have
segmentation masks; four of them have annotations for all object properties. In Fig. 4.1
(top row), we show examples from the datasets (see Fig. C.1 in Appendix C.2 for more
details).

Evaluation. We use segmentation masks to directly assess how a trained model
separates objects. The object property annotations allow us to evaluate representations
via a downstream task that consists in predicting the ground-truth factors of variation
of all objects. This task is similar to downstream prediction tasks that are common
in the disentanglement literature, including Papers I and II. The general idea is that,
if this information can be retrieved efficiently from the representation, it stands to
reason that any arbitrary downstream task that depends on these underlying factors
should also be solvable.
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Figure 4.1. Top: examples from the five datasets considered in the study. Bottom: Example
of distribution shifts applied to CLEVR. Figure from Paper III (Dittadi et al., 2022a).

Probing generalization. Finally, to assess how object separation and usefulness of
the representations are affected by distribution shifts (Hypotheses 2 and 3), we evaluate
segmentation accuracy and downstream task performance after introducing these shifts.
In Fig. 4.1 (bottom row), we show examples of distribution shifts considered in our
study (see Fig. C.2 in Appendix C.3.3 for a complete overview).

4.1.2 On the comparison with non-object-centric models

In Chapter 3 (see Papers I and II in Chapters 5 and 6) we have discussed that
disentanglement may not necessarily always be useful for downstream tasks. Similarly,
in Paper III, we investigate the extent to which object properties can be accurately
predicted from the “flat” distributed representations of VAEs, as opposed to object-
centric representations. To this end, we train VAEs with a latent space size that is
comparable with the global representation size of slot-based models, and attempt a
direct comparison on downstream task performance.

While it is not straightforward to gauge the fairness of this comparison, there are a
few crucial points that should be discussed. The first point concerns the size of the
models. We performed a light hyperparameter search (mostly on model depth) to
obtain models that would at least reconstruct the input relatively well. Since some of
these datasets are relatively complex—although this may not be clear from their visual
appearance—the final VAEs employed in our study are relatively large. (Interestingly,
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Multi-dSprites turned out to be the most challenging dataset in this hyperparameter
search, possibly due to the visual complexity and heavy occlusions.) This may raise
questions regarding the fairness of the comparison. On the other hand, we should note
that: (i) the decoder now faces the challenge of generating the entire image at once,
while typically in slot-based models a simpler decoder is applied independently to each
slot to generate a single object in the scene; (ii) the object-centric models considered
in this study are already rather diverse in terms of size and the largest ones are even
comparable to our VAEs in terms of parameter count.

A second observation is that the downstream task typically considered in object-centric
learning is in some sense meant for object-centric models. In fact, in a multi-object
setting, predicting the properties of all objects is effectively a set prediction task. In a
slot-based object-centric representation where all slots have a common format, one can
apply a simple downstream model to each slot and then match the predictions to the
ground-truth labels to minimize the total loss. In other words, we can directly exploit
the set-like structure of the representations. Conversely, in the VAE setting, a single
vector represents the entire scene, so the same setup is not directly applicable.

A possible approach to overcome this issue, as suggested by Greff et al. (2019), is to
use the whole-scene representation to predict the properties of all objects at once, such
that the objects are sorted lexicographically according to their properties. Potential
issues with this approach are:

1. The model’s input and output size are substantially larger than those of the
downstream model used for object-centric representations, and there is no weight
sharing.

2. The model must learn to sort objects, which could be relatively challenging.

3. On the other hand, since the target is sorted according to object properties, there
is a bias that can be exploited by the model to predict object properties better
than by random chance.

4. When testing such a model with more objects than seen during training, we are
in effect probing the generalization capabilities (extrapolation, in some sense)
of the model. Conversely, in the slot-based case, matching more slots to more
objects has nothing to do with the downstream model, as it is simply performed
by a combinatorial optimization algorithm (e.g., the Hungarian algorithm).
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Another possible solution is to have the model output a flat vector containing predicted
properties of all objects in no particular order, and then match the predictions to
ground-truth object properties using the loss function, as we do in the slot-based case.
This has similar issues and biases as the method discussed above.

In summary, when using set prediction as a downstream task, comparing object-centric
and distributed representations is a challenging problem. Although we attempt to
adapt this task to distributed representations in a relatively simple manner in order to
minimize potential confounding effects, the comparison is arguably still not entirely
fair.

4.1.3 Library

A side product of this study is a PyTorch-based (Paszke et al., 2019) Python library
for training and evaluating object-centric learning methods. Since the five chosen
datasets are not necessarily straightforward to use in general (e.g., the ones from the
DeepMind dataset suite (Kabra et al., 2019) require TensorFlow (Abadi et al., 2016)),
we repackaged all datasets into a common, general-purpose format. We adapted the
official PyTorch implementations of GENESIS and SPACE to our framework, and re-
implemented MONet and the Slot Attention autoencoder. Note that, since none of the
models was originally tested on all the datasets considered here, some hyperparameter
sweeps were necessary for some model–dataset combinations. After training a model,
the library allows for automatic evaluation of segmentation metrics and reconstruction
error, as well as downstream property prediction with various matching strategies and
downstream models. All these evaluations can be performed out of the box on new
models or datasets, as long as they implement the standard interface defined in our
library.

4.2 Main results and discussion

In this section, we summarize and discuss the key findings of our study.

We find strong correlations between the ARI and the MSE across all five datasets:
given a set of models trained on the same dataset, those that reconstruct the input
more accurately also tend to separate objects better according to the ARI. Therefore,
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the MSE can be a useful proxy metric to select high-ARI models, when ground-truth
validation masks are not available. Other segmentation metrics (SC and mSC) agree
with the ARI to a varying extent depending on the dataset, and their correlation with
the MSE is milder and inconsistent across datasets (see Fig. 7.3). However, as discussed
below, we found that the ARI appears to be a generally more useful segmentation
metric than the others considered in our study.

Segmentation may not be the ultimate goal, and we might be interested in learning
object-centric representations for downstream tasks (see Section 2.1.3). This is related to
our first hypothesis above: object representations should contain useful information for
downstream tasks, and information about different objects should be stored separately.
Indeed, in our experiments, we observe that good performance on object property
prediction can be achieved by downstream models that receive learned object-centric
representations as input. Interestingly, we find the ARI to be the only segmentation
metric that consistently has a strong correlation with downstream performance across
all datasets, object properties, and downstream models. This points to the ARI as
a valuable metric for model selection when ground-truth segmentation masks are
available for validation. The MSE is also significantly correlated with downstream
performance—which is unsurprising, considering its correlation with the ARI—but to
a lesser extent and less consistently than the ARI. Although less effective than the
ARI, the reconstruction error can therefore be useful for model selection when masks
are not available.

Note, however, that in more realistic scenarios there may be irrelevant details in the
image (possibly on the objects themselves) that are in effect nuisances with respect to
the downstream tasks of interest (see the discussion on nuisance factors in Sections 2.1.1
and 2.1.4.1). In such cases, accurate reconstruction might be practically unrelated to
correct object separation and downstream usefulness of the representations. In Papa,
Winther, and Dittadi (2022), we confirm this hypothesis. We test different variations
of MONet and Slot Attention on datasets with complex textures added to the objects
via neural style transfer, and study the relationship between reconstruction quality,
segmentation accuracy, and downstream performance on the same tasks considered
in Paper III. We find that the ARI is still consistently correlated with downstream
performance, while the MSE is not. It follows that, unsurprisingly, reconstructing
detailed textures is largely irrelevant for downstream tasks that focus on higher-level
object properties, while segmentation quality remains crucial. In conclusion, the ARI
may be a valuable and relatively robust proxy metric for the downstream usefulness of
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object-centric representations, even when objects have complex textures. Conversely,
the reconstruction MSE is not necessarily informative when objects have a more
complex appearance such as in the presence of diverse textures (Papa, Winther, and
Dittadi, 2022).

Next, we are interested in comparing the downstream performance attainable from
object-centric representations and from “flat”, distributed ones. As discussed in Sec-
tion 4.1.2, making a fair comparison is challenging, since the set prediction task
considered here is particularly well-suited for set-like representations in the first place.
In order to make a sensible assessment of distributed representations, we set up simple
experiments where the downstream predictions are initialized to a random vector of
object properties for all objects in the scene, and are optimized with the standard
training procedure for downstream tasks for distributed representations. We find that
the baseline performance for distributed representations is often remarkably higher
than the standard “random guess” baseline we would use for object-centric represen-
tations (although in some cases it is approximately equal). Despite this advantage,
downstream predictors from object-centric representations tend to outperform those
from distributed representations. Although the task may arguably be more difficult for
a single downstream MLP that has to predict all objects at once (see Section 4.1.2),
we also observe that the performance typically does not improve significantly when
increasing model size up to three hidden layers.

Our second hypothesis is that, when one object is out of distribution, the representations
of other objects should be robust, i.e., they should still faithfully represent those objects’
properties. First, we observe that the models tend to be able to segment the scene
correctly in this single-OOD-object scenario. Then, we focus on the representations
of the objects in the scene, and use the downstream prediction performance to assess
how they are affected by distribution shifts. Our results, presented in Section 7.4.3,
indicate that:

• Property prediction for out-of-distribution objects deteriorates. Moreover, the
representations of the out-of-distribution objects are not reliable, since even
retraining the downstream model after the distribution shift has occurred does
not significantly improve performance.

• The downstream model can correctly predict the properties of the in-distribution
objects, as if the distribution shift did not occur at all—this suggests that the
representations of the in-distribution objects are largely unaffected by one object
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being out of distribution.

Our third hypothesis is that object-centric models are robust even when a distribution
shifts affects global properties of the scene. First, we look for a potential degradation
of segmentation performance at test time when the data undergoes a distribution
shift of this type. Unlike for single-object shifts, for global shifts we observe varying
results depending on the specific shift. For example, cropping and enlarging the scene
often harms segmentation quality, while occlusions appear to have a minor effect.
Interestingly, when the number of objects increases at test time (in CLEVR), we see a
relatively small drop in the ARI for object-centric models, and the reconstruction error
increases less significantly than for the vanilla VAE models. This is presumably due to
the strong inductive bias of object-centric models towards treating objects separately.
However, what may seem surprising is that VAEs trained with up to 6 objects can
generate rather coherent samples that contain more. This suggests that they might
be capable of representing more objects than observable in the training distribution.
In fact, given an image with more objects they seem to be able to reconstruct the
correct number of objects, as shown in Fig. 4.2. On the other hand, some of these
objects have incorrect properties, suggesting that this extrapolation behaviour—where
object-centric models have a clear advantage by design—is limited. We present a
quantitative analysis in Paper III (Chapter 7), and Appendix C.4 includes additional
qualitative and quantitative results.

Regarding the informativeness and usefulness of the object representations under global
distribution shifts, our findings are mostly negative: in all datasets and for all models,
the prediction performance deteriorates significantly for most object properties (al-
though to varying degrees), and cannot be recovered even by adjusting the downstream
model post hoc on the OOD data.

A point that merits discussion is that, while the definition of single-object shifts
is clear—one object is OOD an the others are ID—it is not as straightforward to
characterize global distribution shifts. Cropping is essentially equivalent to an object-
wise distribution shift that enlarges all objects. On the other hand, if we accept this
interpretation, we also have to view this distribution shift as affecting the number
of objects in the scene, their relative spatial arrangement (their centers are farther
apart), and the fact that, on average, more objects than usual may be partially out
of the field of view. Finally, note that cropping may be more simply seen as a shift
in a global property of the scene such as camera view—from this point of view, it is
more easily interpreted as global shift. Occlusion, another global distribution shift in



4.2 Main results and discussion 59

Figure 4.2. Input and reconstructions of 4 randomly selected CLEVR images with more
than 6 objects by VAEs trained with up to 6 objects. Leftmost column: input image. Other
columns: reconstructions by the 10 VAEs in our study that were trained on CLEVR6. Note
that some of the variability comes from sampling z rather than using the posterior mean
(which is typically used as representation in VAEs), but this does not explain that a few
object properties are sometimes inferred incorrectly. On the other hand, it is worth noting
that all VAEs seem to be able to produce coherent samples with more objects than observed
during training.

our categorization, could also be viewed as adding a new object that is very different
from any previously seen object, while leaving other objects untouched. From this
perspective, it is not particularly surprising that object-centric models seem to exhibit
at least partial robustness to this shift. Finally, the number of objects can easily be
interpreted as a global property of the scene. However, considering one object at a time,
there is in fact no distribution shift at all. This partly explains why some object-centric
models tend to be relatively robust to this distribution shift. On the other hand, most
of these models still have to compute visual features and, most importantly, some
form of attention mask, from the entire image: this, following the argument on OOD2
generalization from Chapter 3 and Papers I and II, may explain the minor drop in
performance.

In fact, all distribution shifts considered in this study bring the encoders out of
distribution, and therefore correspond to the OOD2 setting in Papers I and II. However,
the fact that both segmentation and representation quality are affected to a widely
varying degree suggests that there might be inductive biases in the models that make
representation functions more robust to some shift types than to others. In particular,
object-centric models do not appear to be significantly affected when only one object
is out of distribution. In future work, it would be relevant to investigate this further
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by comparing the generalization of object-centric models and other models in a fairer
way, and by testing a broader range of distribution shifts.

On a related note, it would be interesting to consider the OOD1 scenario from Papers I
and II: given a class of representation functions trained on a large enough data
distribution (such that they are never out of distribution at test time), do downstream
models generalize better if the representations are object-centric? For example, we could
learn representation functions on the full CLEVR dataset, and then train downstream
models on a subset of CLEVR that contains few objects, or on another subset that
does not contain red objects. We would then be able to investigate which type of
representation shows more potential for the OOD generalization of downstream models.
Arguably, this is in fact the flavor of generalization that should be enabled by structured,
or even causal, representations of the data. What good is a representation function
that perfectly inverts the data generating process if we use it out of distribution, where
it no longer works reliably?

Another type of distribution shift we are not considering in this study is a shift in
correlations between factors of variation. One example is a correlation between factors
within each object, as we have explored in Träuble et al. (2021) for disentanglement
learning. In the multi-object setting, a similar correlation has been investigated by
Greff et al. (2019), who test IODINE on held-out images from CLEVR containing green
spheres. It would be interesting to test the robustness of object-centric models to this
shift, and study whether per-object disentanglement plays a role (see the generalization
results in Träuble et al. (2021)). Another example that specifically applies to the
multi-object setting is object co-occurrence. E.g., if all images either have zero or two
red spheres, will an object-centric model represent two red spheres in the same slot?
Should it not? Will it be able to generalize to images that only show one red sphere?
This scenario, which includes the special case of object–part hierarchies, also brings
up the question of how the notion of object should be defined (Greff, Steenkiste, and
Schmidhuber, 2020).

Beside distribution shifts, further considerations should be made on the different
ways models and representations could be evaluated. While a clear advantage of
object-centric representations is the possibility of performing separate interventions
on single objects,1 this is in fact not feasible in a sensible, coherent manner in many
existing object-centric models (e.g., MONet blends generated objects into a single
1This includes, for example, performing latent traversals on one slot at a time, or replacing two slots
with a convex combination of the two to smoothly interpolate between them.
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image using alpha masks that are inferred directly from the input). In addition,
as discussed in Section 4.1.2, although factor prediction is a reasonable proxy task,
testing learned representations on more complex and practically relevant downstream
tasks (e.g., relational question answering or reinforcement learning) would improve our
understanding of models trained on multi-object data.

We have also observed that distributed representations (in our case, obtained by train-
ing standard VAEs) might in fact be more useful than expected, but we could not draw
definitive conclusions because of the fundamental incompatibility of these representa-
tions with the set prediction task in our study. Moreover, we found object-centric models
to be rather sensitive to hyperparameters and random seeds, probably because they are
structured models with discrete components. When the optimization goes wrong, and
a model does not segment the scene in a meaningful way, the suitability for downstream
tasks may decrease drastically. By contrast, although simpler models like VAEs lack
some of the beneficial inductive biases of object-centric models, they are generally easier
to optimize and require less hyperparameter tuning. Especially in light of the recent
progress made by focusing on scaling and engineering rather than methodology, an open
question is whether these simpler models may indeed be sufficient, given enough data
and large enough models. For these reasons, a more thorough comparison of object-
centric and distributed representations is needed. New downstream tasks should ideally
make this comparison fairer and sounder, and further inform future research efforts.
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Abstract. Learning meaningful representations that disentangle the underlying
structure of the data generating process is considered to be of key importance in
machine learning. While disentangled representations were found to be useful for
diverse tasks such as abstract reasoning and fair classification, their scalability and real-
world impact remain questionable. We introduce a new high-resolution dataset with
1M simulated images and over 1,800 annotated real-world images of the same setup. In
contrast to previous work, this new dataset exhibits correlations, a complex underlying
structure, and allows to evaluate transfer to unseen simulated and real-world settings
where the encoder i) remains in distribution or ii) is out of distribution. We propose
new architectures in order to scale disentangled representation learning to realistic
high-resolution settings and conduct a large-scale empirical study of disentangled
representations on this dataset. We observe that disentanglement is a good predictor
for out-of-distribution (OOD) task performance.
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5.1 Introduction

Figure 5.1. Images from the simulated dataset
(left) and the real-world setup (right).

Disentangled representations hold the
promise of generalization to unseen sce-
narios (Higgins et al., 2017b), increased
interpretability (Adel, Ghahramani, and
Weller, 2018; Higgins et al., 2018) and
faster learning on downstream tasks (Lo-
catello et al., 2019a; Steenkiste et al.,
2019). However, most of the focus in
learning disentangled representations has
been on small synthetic datasets whose
ground truth factors exhibit perfect inde-
pendence by design. More realistic set-
tings remain largely unexplored. We hypothesize that this is because real-world
scenarios present several challenges that have not been extensively studied to date.
Important challenges are scaling (much higher resolution in observations and factors),
occlusions, and correlation between factors. Consider, for instance, a robotic arm
moving a cube: Here, the robot arm can occlude parts of the cube, and its end-effector
position exhibits correlations with the cube’s position and orientation, which might
be problematic for common disentanglement learners (Träuble et al., 2021). Another
difficulty is that we typically have only limited access to ground truth labels in the
real world, which requires robust frameworks for model selection when no or only weak
labels are available.

The goal of this work is to provide a path towards disentangled representation learning
in realistic settings. First, we argue that this requires a new dataset that captures the
challenges mentioned above. We propose a dataset consisting of simulated observations
from a scene where a robotic arm interacts with a cube in a stage (see Fig. 5.1). This
setting exhibits correlations and occlusions that are typical in real-world robotics.
Second, we show how to scale the architecture of disentanglement methods to perform
well on this dataset. Third, we extensively analyze the usefulness of disentangled
representations in terms of out-of-distribution downstream generalization, both in
terms of held-out factors of variation and sim-to-real transfer. In fact, our dataset is
based on the TriFinger robot from Wüthrich et al. (2020), which can be built to test
the deployment of models in the real world. While the analysis in this paper focuses
on the transfer and generalization of predictive models, we hope that our dataset



5.2 Related Work 65

may serve as a benchmark to explore the usefulness of disentangled representations in
real-world control tasks.

The contributions of this paper can be summarized as follows:

• We propose a new dataset for disentangled representation learning, containing
1M simulated high-resolution images from a robotic setup, with seven partly
correlated factors of variation. Additionally, we provide a dataset of over 1,800
annotated images from the corresponding real-world setup that can be used for
challenging sim-to-real transfer tasks. These datasets are made publicly available.1

• We propose a new neural architecture to successfully scale VAE-based disentan-
glement learning approaches to complex datasets.

• We conduct a large-scale empirical study on generalization to various transfer
scenarios on this challenging dataset. We train 1,080 models using state-of-the-art
disentanglement methods and discover that disentanglement is a good predictor
for out-of-distribution (OOD) performance of downstream tasks.

5.2 Related Work

Disentanglement methods. Most state-of-the-art methods for disentangled rep-
resentation learning are based on the framework of variational autoencoders (VAEs)
(Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014). A (high-
dimensional) observation x is assumed to be generated according to the latent variable
model pθ(x|z)p(z) where the latent variables z have a fixed prior p(z). The generative
model pθ(x|z) and the approximate posterior distribution qφ(z|x) are typically param-
eterized by neural networks, which are optimized by maximizing the evidence lower
bound (ELBO):

LV AE = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) ≤ log p(x) (5.1)

As the above objective does not enforce any structure on the latent space except for
some similarity to p(z), different regularization strategies have been proposed, along
with evaluation metrics to gauge the disentanglement of the learned representations

1http://people.tuebingen.mpg.de/ei-datasets/iclr_transfer_paper/robot_finger_datasets.
tar (6.18 GB)

http://people.tuebingen.mpg.de/ei-datasets/iclr_transfer_paper/robot_finger_datasets.tar
http://people.tuebingen.mpg.de/ei-datasets/iclr_transfer_paper/robot_finger_datasets.tar


66 5 Paper I

(Burgess et al., 2018; Chen et al., 2018; Eastwood and Williams, 2018; Higgins et al.,
2017a; Kim and Mnih, 2018; Kumar, Sattigeri, and Balakrishnan, 2018). Recently,
Locatello et al. (2019b, Theorem 1) showed that the purely unsupervised learning of
disentangled representations is impossible. This limitation can be overcome without
the need for explicitly labeled data by introducing weak labels (Locatello et al., 2020b;
Shu et al., 2020). Ideas related to disentangling the factors of variation date back to
the non-linear ICA literature (Bach and Jordan, 2002; Comon, 1994; Gresele et al.,
2019; Hyvarinen and Morioka, 2016; Hyvarinen, Sasaki, and Turner, 2019; Hyvärinen
and Pajunen, 1999; Jutten and Karhunen, 2003). Recent work combines non-linear
ICA with disentanglement (Khemakhem et al., 2020; Klindt et al., 2020; Sorrenson,
Rother, and Köthe, 2020).

Evaluating disentangled representations. The BetaVAE (Higgins et al., 2017a)
and FactorVAE (Kim and Mnih, 2018) scores measure disentanglement by performing
an intervention on the factors of variation and predicting which factor was intervened
on. The Mutual Information Gap (MIG) (Chen et al., 2018), Modularity (Ridgeway
and Mozer, 2018), DCI Disentanglement (Eastwood and Williams, 2018) and SAP
scores (Kumar, Sattigeri, and Balakrishnan, 2018) are based on matrices relating
factors of variation and codes (e.g. pairwise mutual information, feature importance
and predictability).

Datasets for disentanglement learning. dSprites (Higgins et al., 2017a), which
consists of binary low-resolution 2D images of basic shapes, is one of the most commonly
used synthetic datasets for disentanglement learning. Color-dSprites, Noisy-dSprites,
and Scream-dSprites are slightly more challenging variants of dSprites. The SmallNORB
dataset contains toy images rendered under different lighting conditions, elevations
and azimuths (LeCun, Huang, and Bottou, 2004). Cars3D (Reed et al., 2015) exhibits
different car models from Fidler, Dickinson, and Urtasun (2012) under different camera
viewpoints. 3dshapes is a popular dataset of simple shapes in a 3D scene (Kim and
Mnih, 2018). Finally, Gondal et al. (2019) proposed MPI3D, containing images of
physical 3D objects with seven factors of variation, such as object color, shape, size
and position available in a simulated, simulated and highly realistic rendered simulated
variant. Except MPI3D which has over 1M images, the size of the other datasets is
limited with only 17, 568 to 737, 280 images. All of the above datasets exhibit perfect
independence of all factors, the number of possible states is on the order of 1M or less,
and due to their static setting they do not allow for dynamic downstream tasks such
as reinforcement learning. In addition, except for SmallNORB, the image resolution is
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limited to 64x64 and there are no occlusions.

Other related work. Locatello et al. (2020b) probed the out-of-distribution gen-
eralization of downstream tasks trained on disentangled representations. However,
these representations are trained on the entire dataset. Generalization and transfer
performance especially for representation learning has likewise been studied in Arjovsky
et al. (2019), Dayan (1993), Gowal et al. (2020), Heinze-Deml and Meinshausen (2017),
Krueger et al. (2020), Li et al. (2018), Muandet, Balduzzi, and Schölkopf (2013),
Rojas-Carulla et al. (2018), and Suter et al. (2019). For the role of disentanglement in
causal representation learning we refer to the recent overview by Schölkopf et al. (2021).
Träuble et al. (2021) systematically investigated the effects of correlations between
factors of variation on disentangled representation learners. Transfer of learned disen-
tangled representations from simulation to the real world has been recently investigated
by Gondal et al. (2019) on the MPI3D dataset, and previously by Higgins et al. (2017b)
in the context of reinforcement learning. Sim-to-real transfer is of major interest in
the robotic learning community, because of limited data and supervision in the real
world (Andrychowicz et al., 2020; James et al., 2019; Peng et al., 2018; Rusu et al.,
2017; Tobin et al., 2017; Yan et al., 2020).

Table 5.1. Factors of variation in the proposed dataset. Values are linearly spaced in the
specified intervals. Joint angles are in radians, cube positions in meters.

FoV Values
Upper joint 30 values in [−0.65,+0.65]
Middle joint 30 values in [−0.5,+0.5]
Lower joint 30 values in [−0.8,+0.8]
Cube position x 30 values in [−0.11,+0.11]
Cube position y 30 values in [−0.11,+0.11]
Cube rotation 10 values in [0◦, 81◦]
Cube color hue 12 values in [0◦, 330◦]
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5.3 Scaling Disentangled Representations to Complex
Scenarios

A new challenging dataset. Simulated images in our dataset are derived from
the trifinger robot platform introduced by Wüthrich et al. (2020). The motivation for
choosing this setting is that (1) it is challenging due to occlusions, correlations, and
other difficulties encountered in robotic settings, (2) it requires modeling of fine details
such as tip links at high resolutions, and (3) it corresponds to a robotic setup, so that
learned representations can be used for control and reinforcement learning in simulation
and in the real world. The scene comprises a robot finger with three joints that can be
controlled to manipulate a cube in a bowl-shaped stage. Fig. 5.1 shows examples of
scenes from our dataset. The data is generated from 7 different factors of variation
(FoV) listed in Table 5.1. Unlike in previous datasets, not all FoVs are independent:
The end-effector (the tip of the finger) can collide with the floor or the cube, resulting
in infeasible combinations of the factors (see Appendix A.2.1). We argue that such
correlations are a key feature in real-world data that is not present in existing datasets.
The high FoV resolution results in approximately 1.52 billion feasible states, but the
dataset itself only contains one million of them (approximately 0.065% of all possible
FoV combinations), realistically rendered into 128 × 128 images. Additionally, we
recorded an annotated dataset under the same conditions in the real-world setup: we
acquired 1,809 camera images from the same viewpoint and recorded the labels of
the 7 underlying factors of variation. This dataset can be used for out-of-distribution
evaluations, few-shot learning, and testing other sim-to-real aspects.

Model architecture. When scaling disentangled representation learning to more
complex datasets, such as the one proposed here, one of the main bottlenecks in current
VAE-based approaches is the flexibility of the encoder and decoder networks. In partic-
ular, using the architecture from Locatello et al. (2019b), none of the models we trained
correctly captured all factors of variation or yielded high-quality reconstructions. While
the increased image resolution already presents a challenge, the main practical issue
in our new dataset is the level of detail that needs to be modeled. In particular, we
identified the cube rotation and the lower joint position to be the factors of variation
that were the hardest to capture. This is likely because these factors only produce
relatively small changes in the image and hence the reconstruction error.

To overcome these issues, we propose a deeper and wider neural architecture than
those commonly used in the disentangled representation learning literature, where the
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encoder and decoder typically have 4 convolutional and 2 fully-connected layers. Our
encoder consists of a convolutional layer, 10 residual blocks, and 2 fully-connected
layers. Some residual blocks are followed by 1x1 convolutions that change the number
of channels, or by average pooling that downsamples the tensors by a factor of 2 along
the spatial dimensions. Each residual block consists of two 3x3 convolutions with
a leaky ReLU nonlinearity, and a learnable scalar gating mechanism (Bachlechner
et al., 2020). Overall, the encoder has 23 convolutional layers and 2 fully connected
layers. The decoder mirrors this architecture, with average pooling replaced by bilinear
interpolation for upsampling. The total number of parameters is approximately 16.3M.
See Appendix A.1 for further implementation details.

Experimental setup. We perform a large-scale empirical study on the simulated
dataset introduced above by training 1,080 β-VAE models.2 For further experimental
details we refer the reader to Appendix A.1. The hyperparameter sweep is defined as
follows:

• We train the models using either unsupervised learning or weakly supervised
learning (Locatello et al., 2020b). In the weakly supervised case, a model is
trained with pairs of images that differ in k factors of variation. Here we fix k = 1
as it was shown to lead to higher disentanglement by Locatello et al. (2020b).
The dataset therefore consists of 500k pairs of images that differ in only one FoV.

• We vary the parameter β in {1, 2, 4}, and use linear deterministic warm-up
(Bowman et al., 2015; Sønderby et al., 2016) over the first {0, 10000, 50000}
training steps.

• The latent space dimensionality is in {10, 25, 50}.

• Half of the models are trained with additive noise in the input image. This choice
is motivated by the fact that adding noise to the input of neural networks has
been shown to be beneficial for out-of-distribution generalization (Bishop, 1995;
Sietsma and Dow, 1991).

• Each of the 108 resulting configurations is trained with 10 random seeds.

Can we scale up disentanglement learning? Most of the trained VAEs in our em-
pirical study fully capture all the elements of a scene, correctly model heavy occlusions,
2Training these models requires approximately 2.8 GPU years on NVIDIA Tesla V100 PCIe.
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Figure 5.2. Latent traversals of a trained model that perfectly disentangles the dataset’s
FoVs. In each column, all latent variables but one are fixed.

and generate detailed, high-quality samples and reconstructions (see Appendix A.2.2).
From visual inspections such as the latent traversals in Fig. 5.2, we observe that
many trained models fully disentangle the ground-truth factors of variation. This,
however, appears to only be possible in the weakly supervised scenario. The fact that
models trained without supervision learn entangled representations is in line with
the impossibility result for the unsupervised learning of disentangled representations
from Locatello et al. (2019b). Latent traversals from a selection of models with dif-
ferent degrees of disentanglement are presented in Appendix A.2.3. Interestingly, the
high-disentanglement models seem to correct for correlations and interpolate infeasible
states, i.e. the fingertip traverses through the cube or the floor.

Summary: The proposed architecture can scale disentanglement learning to more
realistic settings, but a form of weak supervision is necessary to achieve high disen-
tanglement.

How useful are common disentanglement metrics in realistic scenarios? The
violin plot in Fig. 5.3 (left) shows that DCI and MIG measure high disentanglement
under weak supervision and lower disentanglement in the unsupervised setting. This
is consistent with our qualitative conclusion from visual inspection of the models
(Appendix A.2.3) and with the aforementioned impossibility result. Many of the
models trained with weak supervision exhibit a very high DCI score (29% of them have
>99% DCI, some of them up to 99.89%). SAP and Modularity appear to be ineffective
at capturing disentanglement in this setting, as also observed by Locatello et al. (2019b).
Finally, note that the BetaVAE and FactorVAE metrics are not straightforward to be
evaluated on datasets that do not contain all possible combinations of factor values.
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Figure 5.3. Left: Disentanglement metrics aggregating all hyperparameters except for
supervision type. Right: Spearman Rank correlations of the disentanglement metrics with
the ELBO, the reconstruction loss, and the test error of a GBT classifier trained on 10,000
labelled data points. The upper rank correlations correspond to the unsupervised models and
the lower ones to the weakly supervised models.

According to Fig. 5.3 (right), DCI and MIG strongly correlate with test accuracy of
GBT classifiers predicting the FoVs. In the weakly supervised setting, these metrics
are strongly correlated with the ELBO (positively) and with the reconstruction loss
(negatively). We illustrate these relationships in more detail in Appendix A.2.4. Such
correlations were also observed by Locatello et al. (2020b) on significantly less complex
datasets, and can be exploited for unsupervised model selection: these unsupervised
metrics can be used as proxies for disentanglement metrics, which would require fully
labeled data.

Summary: DCI and MIG appear to be useful disentanglement metrics in realistic
scenarios, whereas other metrics seem to fall short of capturing disentanglement or
can be difficult to compute. When using weak supervision, we can select disentangled
models with unsupervised metrics.

5.4 Framework for the Evaluation of OOD Generalization

Previous work has focused on evaluating the usefulness of disentangled representations
for various downstream tasks, such as predicting ground truth factors of variation, fair
classification, and abstract reasoning. Here we propose a new framework for evaluating
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the out-of-distribution (OOD) generalization properties of representations. More
specifically, we consider a downstream task—in our case, regression of ground truth
factors—trained on a learned representation of the data, and evaluate the performance
on a held-out test set. While the test set typically follows the same distribution as the
training set (in-distribution generalization), we also consider test sets that follow a
different distribution (out-of-distribution generalization). Our goal is to investigate to
what extent, if at all, downstream tasks trained on disentangled representations exhibit
a higher degree of OOD generalization than those trained on entangled representations.

Let D denote the training set for disentangled representation learning. To investigate
OOD generalization, we train downstream regression models on a subset D1 ⊂ D to
predict ground truth factor values from the learned representation computed by the
encoder. We independently train one predictor per factor. We then test the regression
models on a set D2 that differs distributionally from the training set D1, as it either
contains images corresponding to held-out values of a chosen FoV (e.g. unseen object
colors), or it consists of real-world images. We now differentiate between two scenarios:
(1) D2 ⊂ D, i.e. the OOD test set is a subset of the dataset for representation learning;
(2) D and D2 are disjoint and distributionally different. These two scenarios will be
denoted by OOD1 and OOD2, respectively. For example, consider the case in which
distributional shifts are based on one FoV: the color of the object. Then, we could
define these datasets such that images in D always contain a red or blue object, and
those in D1 ⊂ D always contain a red object. In the OOD1 scenario, images in D2

would always contain a blue object, whereas in the OOD2 case they would always
contain an object that is neither red nor blue.

The regression models considered here are Gradient Boosted Trees (GBT), random
forests, and MLPs with {1, 2, 3} hidden layers. Since random forests exhibit a similar
behavior to GBTs, and all MLPs yield similar results to each other, we choose GBTs
and the 2-layer MLP as representative models and only report results for those. To
quantify prediction quality, we normalize the ground truth factor values to the range
[0, 1], and compute the mean absolute error (MAE). Since the values are normalized,
we can define our transfer metric as the average of the MAE over all factors (except
for the FoV that is OOD).
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5.5 Benefits and Transfer of Structured Representations

Experimental setup. We evaluate the transfer metric introduced in Section 5.4
across all 1,080 trained models. To compute this metric, we train regression models
to predict the ground truth factors of variation, and test them under distributional
shift. We consider distributional shifts in terms of cube color or sim-to-real, and we do
not evaluate downstream prediction of cube color. We report scores for two different
regression models: a Gradient Boosted Tree (GBT) and an MLP with 2 hidden layers
of size 256. In Appendix A.1 we provide details on the datasets used in this section.

In the OOD1 setting, we have D2 ⊂ D, hence the encoder is in-distribution: we are
testing the predictor on representations of images that were in the training set of the
representation learning algorithm. Therefore, we expect the representations to be
meaningful. We consider three scenarios:

• OOD1-A: The regression models are trained on 1 cube color (red) and evaluated
on the remaining 7 colors.

• OOD1-B: The regression models are trained on 4 cube colors with high hue in
the HSV space, and evaluated on 4 cube colors with low hue (extrapolation).

• OOD1-C: The regression models are again trained and evaluated on 4 cube colors,
but the training and evaluation colors are alternating along the hue dimension
(interpolation).

In the more challenging setting where even the encoder is out-of-distribution (OOD2,
with D2 ∩D = ∅), we train the regression models on a subset of the training set D
that includes all 8 cube colors, and we consider the two following scenarios:

• OOD2-A: The regression models are evaluated on simulated data, on 4 cube
colors that are out of the encoder’s training distribution.

• OOD2-B: The regression models are evaluated on real-world images of the robotic
setup, without any adaptation or fine-tuning.

Is disentanglement correlated with OOD1 generalization? In Fig. 5.4 we
consistently observe a negative correlation between disentanglement and transfer error
across all OOD1 settings. The correlation is mild when using MLPs, strong when using
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Figure 5.4. Higher disentanglement corresponds to better generalization across all OOD1
scenarios, as seen from the transfer scores (left). The transfer score is computed as the mean
absolute prediction error of ground truth factor values (lower is better). This correlation
is particularly evident in the GBT case, whereas MLPs appear to exhibit better OOD1
transfer with very high disentanglement only. These results are mirrored in the Spearman
rank correlations between transfer scores and disentanglement metrics (right).

GBTs. This difference is expected, as GBTs have an axis-alignment bias whereas MLPs
can—given enough data and capacity—disentangle an entangled representation more
easily. Our results therefore suggest that highly disentangled representations are
useful for generalizing out-of-distribution as long as the encoder remains
in-distribution. This is in line with the correlation found by Locatello et al. (2019b)
between disentanglement and the GBT10000 metric. There, however, GBTs are
tested on the same distribution as the training distribution, while here we test them
under distributional shift. Given that the computation of disentanglement scores
requires labels, this is of little benefit in the unsupervised setting. However, it can
be exploited in the weakly supervised setting, where disentanglement was shown to
correlate with ELBO and reconstruction loss (Section 5.3). Therefore, model selection
for representations that transfer well in these scenarios is feasible based on the ELBO
or reconstruction loss, when weak supervision is available. Note that, in absolute
terms, the OOD generalization error with encoder in-distribution (OOD1) is very low
in the high-disentanglement case (the only exception being the MLP in the OOD1-C
case, with the 1-7 color split, which seems to overfit). This suggests that disentangled
representations can be useful in downstream tasks even when transferring out of the
training distribution.

Summary: Disentanglement seems to be positively correlated with OOD generalization
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of downstream tasks, provided that the encoder remains in-distribution (OOD1). Since
in the weakly supervised case disentanglement correlates with the ELBO and the
reconstruction loss, model selection can be performed using these metrics as proxies
for disentanglement. These metrics have the advantage that they can be computed
without labels, unlike disentanglement metrics.

Is disentanglement correlated with OOD2 generalization? As we can observe
in Fig. 5.5, the negative correlation between disentanglement and GBT transfer error
is weaker when the encoder is out of distribution (OOD2). Nonetheless, we observe a
non-negligible correlation for GBTs in the OOD2-A case, where we investigate out-
of-distribution generalization along one FoV, with observations in D2 still generated
from the same simulator. In the OOD2-B setting, where the observations are taken
from cameras in the corresponding real-world setting, the correlation between disen-
tanglement and transfer performance appears to be minor at best. This scenario can
be considered a variant of zero-shot sim-to-real generalization.

Summary: Disentanglement has a minor effect on out-of-distribution generalization
outside of the training distribution of the encoder (OOD2).

What else matters for OOD2 generalization? Results in Fig. 5.6 suggest that
adding Gaussian noise to the input during training as described in Section 5.3 leads to
significantly better OOD2 generalization, and has no effect on OOD1 generalization.

Figure 5.5. Disentanglement affects generalization across the OOD2 scenarios only minimally
as seen from transfer scores (left) and corresponding rank correlations with disentanglement
metrics (right).
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Figure 5.6. Noise improves generalization across the OOD2 scenarios and less so for the
OOD1 scenarios as seen from the transfer scores. Top row: Spearman rank correlation
coefficients between transfer metrics and presence of noise in the input.

Adding noise to the input of neural networks is known to lead to better generalization
(Bishop, 1995; Sietsma and Dow, 1991). This is in agreement with our results, since
OOD1 generalization does not require generalization of the encoder, while OOD2
does. Interestingly, closer inspection reveals that the contribution of different factors
of variation to the generalization error can vary widely. See Appendix A.2.5 for further

Figure 5.7. Zero-shot transfer
of our models trained in simula-
tion to real images. Left: input;
right: reconstruction.

details. In particular, with noisy input, the position
of the cube is predicted accurately even in real-world
images (<5% mean absolute error on each axis). This is
promising for robotics applications, where the true state
of the joints is observable but inference of the cube po-
sition relies on object tracking methods. Fig. 5.7 shows
an example of real-world inputs and reconstructions of
their simulated equivalents.

Summary: Adding input noise during training appears
to be significantly beneficial for OOD2 generalization,
while having no effect when the encoder is kept in its
training distribution (OOD1).
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5.6 Conclusion

Despite the growing importance of the field and the potential societal impact in the
medical domain (Chartsias et al., 2018) and fair decision making (Locatello et al.,
2019a), state-of-the-art approaches for learning disentangled representations have so far
only been systematically evaluated on synthetic toy datasets. Here we introduced a new
high-resolution dataset with 1M simulated images and over 1,800 annotated real-world
images of the same setup. This dataset exhibits a number of challenges and features
which are not present in previous datasets: it contains correlations between factors,
occlusions, a complex underlying structure, and it allows for evaluation of transfer to
unseen simulated and real-world settings. We proposed a new VAE architecture to
scale disentangled representation learning to this realistic setting and conducted a large-
scale empirical study of disentangled representations on this dataset. We discovered
that disentanglement is a good predictor of OOD generalization of downstream tasks
and showed that, in the context of weak supervision, model selection for good OOD
performance can be based on the ELBO or the reconstruction loss, which are accessible
without explicit labels. Our setting allows for studying a wide variety of interesting
downstream tasks in the future, such as reinforcement learning or learning a dynamics
model of the environment. Finally, we believe that in the future it will be important
to take further steps in the direction of this paper by considering settings with even
more complex structures and stronger correlations between factors.
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Abstract. Building sample-efficient agents that generalize out-of-distribution (OOD)
in real-world settings remains a fundamental unsolved problem on the path towards
achieving higher-level cognition. One particularly promising approach is to begin
with low-dimensional, pretrained representations of our world, which should facilitate
efficient downstream learning and generalization. By training 240 representations and
over 10,000 reinforcement learning (RL) policies on a simulated robotic setup, we
evaluate to what extent different properties of pretrained VAE-based representations
affect the OOD generalization of downstream agents. We observe that many agents are
surprisingly robust to realistic distribution shifts, including the challenging sim-to-real
case. In addition, we find that the generalization performance of a simple downstream
proxy task reliably predicts the generalization performance of our RL agents under a
wide range of OOD settings. Such proxy tasks can thus be used to select pretrained
representations that will lead to agents that generalize.
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6.1 Introduction

Robust out-of-distribution (OOD) generalization is one of the key open challenges in
machine learning. This is particularly relevant for the deployment of ML models to
the real world, where we need systems that generalize beyond the i.i.d. (independent
and identically distributed) data setting (Azulay and Weiss, 2019; Barbu et al., 2019;
Djolonga et al., 2021; Funk et al., 2021; Gulrajani and Lopez-Paz, 2020; Hendrycks and
Dietterich, 2019; Koh et al., 2021; Michaelis et al., 2019; Roy et al., 2018; Schölkopf
et al., 2021). One instance of such models are agents that learn by interacting with a
training environment and we would like them to generalize to other environments with
different statistics (Ahmed et al., 2021; Cobbe et al., 2019; Ke et al., 2021; Pfister,
Bauer, and Peters, 2019; Zhang et al., 2018). Consider the example of a robot with
the task of moving a cube to a target position: Such an agent can easily fail as soon as
some aspects of the environment differ from the training setup, e.g. the shape, color,
and other object properties, or when transferring from simulation to real world.

Humans do not suffer from these pitfalls when transferring learned skills beyond a
narrow training domain, presumably because they represent visual sensory data in a
concise and useful manner (Anand et al., 2019; Gordon and Irwin, 1996; Lake et al.,
2017; Marr, 1982; Spelke, 1990). Therefore, a particularly promising path is to base pre-
dictions and decisions on similar low-dimensional representations of our world (Barreto
et al., 2017; Bengio, Courville, and Vincent, 2013; Dittadi, Drachmann, and Bolander,
2021; Finn et al., 2016; Kaiser et al., 2019; Stooke et al., 2021; Vinyals et al., 2019).
The learned representation should facilitate efficient downstream learning (Anand
et al., 2019; Eslami et al., 2018; Steenkiste et al., 2019; Stooke et al., 2021) and exhibit
better generalization (Srinivas, Laskin, and Abbeel, 2020; Zhang et al., 2020). Learning
such a representation from scratch for every downstream task and every new variation
would be inefficient. If we learned to juggle three balls, we should be able to generalize
to oranges or apples without learning again from scratch. We could even do it with
cherimoyas, a fruit that we might have never seen before. We can effectively reuse our
generic representation of the world.

We thus consider deep learning agents trained from pretrained representations and
ask the following questions: To what extent do they generalize under distribution
shifts similar to those mentioned above? Do they generalize in different ways or to
different degrees depending on the type of distribution shift, including sim-to-real?
Can we predict the OOD generalization of downstream agents from properties of the
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pretrained representations?

To answer the questions above, we need our experimental setting to be realistic, diverse,
and challenging, but also controlled enough for the conclusions to be sound. We
therefore base our study on the robot platform introduced by Wüthrich et al. (2020).
The scene comprises a robot finger with three joints that can be controlled to manipulate
a cube in a bowl-shaped stage. Dittadi et al. (2021b) conveniently introduced a dataset
of simulated and real-world images of this setup with ground-truth labels, which can
be used to pretrain and evaluate representations. To train downstream agents, we
adapted the simulated reinforcement learning benchmark CausalWorld from Ahmed
et al. (2021) that was developed for this platform. Building upon these works, we design
our experimental study as follows (see Fig. 6.1): First, we pretrain representations
from static simulated images of the setup and evaluate a collection of representation
metrics. Following prior work (Eslami et al., 2018; Ghadirzadeh et al., 2017; Ha and
Schmidhuber, 2018; Nair et al., 2018; Van Hoof et al., 2016; Watter et al., 2015),
we focus on autoencoder-based representations. Then, we train downstream agents
from this fixed representation on a set of environments. Finally, we investigate the
zero-shot generalization of these agents to new environments that are out of the training
distribution, including the real robot.

The goal of this work is to provide the first systematic and extensive account of the
OOD generalization of downstream RL agents in a robotic setup, and how this is
affected by characteristics of the upstream pretrained representations. We summarize
our contributions as follows:

• We train 240 representations and 11,520 downstream policies,1 and systematically
investigate their performance under a diverse range of distribution shifts.2

• We extensively analyze the relationship between the generalization of our RL
agents and a substantial set of representation metrics.

• Notably, we find that a specific representation metric that measures the general-
ization of a simple downstream proxy task reliably predicts the generalization of
downstream RL agents under the broad spectrum of OOD settings considered
here. This metric can thus be used to select pretrained representations that will

1Training the representations required approximately 0.62 GPU years on NVIDIA Tesla V100. Training
and evaluating the downstream policies required about 86.8 CPU years on Intel Platinum 8175M.

2Additional results and videos are provided at https://sites.google.com/view/ood-rl.

https://sites.google.com/view/ood-rl
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lead to more robust downstream policies.

• In the most challenging of our OOD scenarios, we deploy a subset of the trained
policies to the corresponding real-world robotic platform, and observe surprising
zero-shot sim-to-real generalization without any fine-tuning or domain random-
ization.

6.2 Background

In this section, we provide relevant background on the methods for representation
learning and reinforcement learning, and on the robotic setup to evaluate out-of-
distribution generalization.

Variational autoencoders. VAEs (Kingma and Welling, 2014; Rezende, Mohamed,
and Wierstra, 2014) are a framework for optimizing a latent variable model pθ(x) =∫

z pθ(x |z)p(z)dz with parameters θ, typically with a fixed prior p(z) = N (z; 0, I),
using amortized stochastic variational inference. A variational distribution qφ(z |x)
with parameters φ approximates the intractable posterior pθ(z |x). The approximate
posterior and generative model, typically called encoder and decoder and parameterized
by neural networks, are jointly optimized by maximizing a lower bound to the log
likelihood (the ELBO):

log pθ(x) ≥ Eqφ(z |x) [log pθ(x |z)]−DKL (qφ(z |x)‖p(z)) = LELBOθ,φ (x) . (6.1)

In β-VAEs, the KL term is modulated by a factor β to enforce a more structured
latent space (Burgess et al., 2018; Higgins et al., 2017a). While VAEs are typically
trained without supervision, we also employ a form of weak supervision (Locatello
et al., 2020b) that encourages disentanglement.

Reinforcement learning. A Reinforcement Learning (RL) problem is typically
modeled as a Partially Observable Markov Decision Process (POMDP) defined as
a tuple (S,A, T,R,Ω, O, γ, ρ0, H) with states s ∈ S, actions a ∈ A and observations
o ∈ Ω determined by the state and action of the environment O(o|s, a). T (st+1|st, at)
is the transition probability distribution function, R(st, at) is the reward function, γ
is the discount factor, ρ0(s) is the initial state distribution at the beginning of each
episode, and H is the time horizon per episode. The objective in RL is to learn a policy
π : S ×A→ [0, 1], typically parameterized by a neural network, that maximizes the
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Figure 6.1. Overview of our experimental setup for investigating out-of-
distribution generalization in downstream tasks. (1) We train 240 β-VAEs on the
robotic dataset from Dittadi et al. (2021b). (2) We then train downstream policies to solve
object reaching or pushing, using multiple random RL seeds per VAE. The input to a policy
consists of the output of a pretrained encoder and additional task-related observable variables.
Crucially, the policy is only trained on a subset of the cube colors from the pretraining dataset.
(3) Finally, we evaluate these policies on their respective tasks in four different scenarios:
(a) in-distribution, i.e. with cube colors used in policy training; (b) OOD1, i.e. with cube
colours previously seen by the encoder but OOD for the policy; (c) OOD2-sim, having cube
colours also OOD to the encoder; (d) sim-to-real zero-shot on the real-world setup.

total discounted expected reward J(π) = E
[∑H

t=0 γ
tR(st, at)

]
. There is a broad range

of model-free learning algorithms to find π∗ by policy gradient optimization or by
learning value functions while trading off exploration and exploitation (Fujimoto, Hoof,
and Meger, 2018; Haarnoja et al., 2018b; Schulman et al., 2015a; b; 2017; Silver et al.,
2014; Sutton et al., 1999). Here, we optimize the objective above with Soft Actor Critic
(SAC), an off-policy method that simultaneously maximizes the expected reward and
the entropy H(π(·|st)), and is widely used in control tasks due to its sample efficiency
(Haarnoja et al., 2018b).

A robotic setup to evaluate out-of-distribution generalization. Our study is
based on a real robot platform where a robotic finger with three joints manipulates
a cube in a bowl-shaped stage (Wüthrich et al., 2020). We pretrain representations
on a labeled dataset introduced by Dittadi et al. (2021b) which consists of simulated
and real-world images of this setup. This dataset has 7 underlying factors of variation
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(FoV): angles of the three joints, and position (x and y), orientation, and color of
the cube. Some of these factors are correlated (Dittadi et al., 2021b), which may be
problematic for representation learners, especially in the context of disentanglement
(Chen et al., 2021; Träuble et al., 2021). After training the representations, we train
downstream agents and evaluate their generalization on an adapted version of the
simulated CausalWorld benchmark (Ahmed et al., 2021) that was developed for the
same setup. Finally, we test sim-to-real generalization on the real robot.

Our experimental setup, illustrated in Fig. 6.1, allows us to systematically investigate
a broad range of out-of-distribution scenarios in a controlled way. We pretrain our
representations from this simulated dataset that covers 8 distinct cube colors. We
then train an agent from this fixed representation on a subset of the cube colors,
and evaluate it (1) on the same colors (this is the typical scenario in RL), (2) on
the held-out cube colors that are still known to the encoder, or (3) OOD w.r.t. the
encoder’s training distribution, e.g. on novel colors and shapes or on the real world.

We closely follow the framework for measuring OOD generalization proposed by Dittadi
et al. (2021b). In this framework, a representation is initially learned on a training
set D, and a simple downstream model is trained on a subset D1 ⊂ D to predict the
ground-truth factors from the learned representation. Generalization is then evaluated
by testing the downstream model on a set D2 that differs distributionally from D1,
e.g. containing images corresponding to held-out values of a chosen factor of variation
(FoV). Dittadi et al. (2021b) consider two flavors of OOD generalization depending on
the choice of D2: First, the case when D2 ⊂ D, i.e. the OOD test set is a subset of
the dataset for representation learning. This is denoted by OOD1 and corresponds
to the scenario (2) from the previous paragraph. In the other scenario, referred to as
OOD2, D and D2 are disjoint and distributionally different. This even stronger OOD
shift corresponds to case (3) above. The generalization score for D2 is then measured
by the (normalized) mean absolute prediction error across all FoVs except for the one
that is OOD. Following Dittadi et al. (2021b), we use a simple 2-layer Multi-Layer
Perceptron (MLP) for downstream factor prediction, we train one MLP for each FoV,
and report the negative error. This simple and cheap generalization metric could serve
as a convenient proxy for the generalization of more expensive downstream tasks. We
refer to these generalization scores as GS-OOD1, GS-OOD2-sim, and GS-OOD2-real
depending on the scenario.

The focus of Dittadi et al. (2021b) was to scale VAE-based approaches to more realistic
scenarios and study the generalization of these simple downstream tasks, with a
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particular emphasis on disentanglement. Building upon their contributions, we can
leverage the broader potential of this robotic setup with many more OOD2 scenarios to
study our research questions: To what extent can agents generalize under distribution
shift? Do they generalize in different ways depending on the type of shift (including
sim-to-real)? Can we predict the OOD generalization of downstream agents from
properties of the pretrained representations such as the GS metrics from Dittadi et al.
(2021b)?

6.3 Study design

Robotic setup. Our setup is based on TriFinger (Wüthrich et al., 2020) and consists
of a robotic finger with three joints that can be controlled to manipulate an object (e.g.
a cube) in a bowl-shaped stage. The agent receives a camera observation consistent
with the images in Dittadi et al. (2021b) and outputs a three-dimensional action.
During training, which always happens in simulation, the agent only observes a cube
of four possible colors, randomly sampled at every episode (see Fig. 6.1, step 2).

Distribution shifts. After training, we evaluate these agents in 7 environments: (1)
the training environment, which is the typical setting in RL, (2) the OOD1 setting with
cube colors that are OOD for the agent but still in-distribution for the encoder, (3)
the more challenging OOD2-sim setting where the colors are also OOD for the encoder,
(4-6) the OOD2 settings where the object colors are as in the 3 previous settings but
the cube is replaced by a sphere (a previously unseen shape), (7) the OOD2-real setting,
where we evaluate zero-shot sim-to-real transfer on the real robotic platform.

Tasks. We begin our study with the object reaching downstream control task, where
the agent has to reach an object placed at an arbitrary random position in the arena.
This is significantly more challenging than directly predicting the ground-truth factors,
as the agent has to learn to reach the cube by acting on the joints, with a scalar
reward as the only learning signal. Consequently, the compute required to learn
this task is about 1,000 times greater than in the simple factor prediction case. We
additionally include in our study a pushing task which consists of pushing an object to
a goal position that is sampled at each episode. Learning this task takes one order of
magnitude more compute than object reaching, likely due to the complex rigid-body
dynamics and object interactions. To the best of our knowledge, this is the most
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challenging manipulation task that is currently feasible on our setup. Ahmed et al.
(2021) report solving a similar pushing task, but require the full ground-truth state to
be observable.

Training the RL agents. The inputs at time t are the camera observation ot and
a vector of observable variables xt containing the joint angles and velocities, as well as
the target object position in pushing. We then feed the camera observation ot into an
encoder e that was pretrained on the dataset in Dittadi et al. (2021b). The result is
concatenated with xt, yielding a state vector st = [xt, e(ot)]. We then use SAC to train
the policy with st as input. The policy, value, and Q networks are implemented as MLPs
with 2 hidden layers of size 256. When training the policies, we keep the encoder frozen.

Model sweep. To shed light on the research questions outlined in the previous
sections, we perform a large-scale study in which we train 240 representation models
and 11,520 downstream policies, as described below. See Appendix B.1 for further
implementation details.

• We train 120 β-VAEs (Higgins et al., 2017a) and 120 Ada-GVAEs (Locatello et al.,
2020b) with a subset of the hyperparameter configurations and neural architecture
from Dittadi et al. (2021b). Specifically, we consider β ∈ {1, 2, 4}, β annealing
over {0, 50000} steps, with and without input noise, and 10 random seeds per
configuration. The latent space size is fixed to 10 following prior work (Chen
et al., 2018; Kim and Mnih, 2018; Locatello et al., 2020b; Träuble et al., 2021).

• For object reaching, we train 20 downstream policies (varying random seed) for
each of the 240 VAEs. The resulting 4,800 policies are trained for 400k steps
(approximately 2,400 episodes).

• Since pushing takes substantially longer to train, we limit the number of policies
trained on this task: We choose a subset of 96 VAEs corresponding to only 4
seeds, and then use 10 seeds per representation. The resulting 960 policies are
trained for 3M steps (about 9,000 episodes).

• Finally, for both tasks we also investigate the role of regularization on the policy.
More specifically, we repeat the two training sweeps from above (5,760 policies),
with the difference that now the policies are trained with L1 regularization on
the first layer.
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Limitations of our study. Although we aim to provide a sound and extensive
empirical study, such studies are inevitably computationally demanding. Thus, we
found it necessary to make certain design choices. For each of these choices, we
attempted to follow common practice, in order to maintain our study as relevant,
general, and useful as possible. One such decision is that of focusing on autoencoder-
based representations. To answer our questions on the effect of upstream representations
on the generalization of downstream policies, we need a diverse range of representations.
How these representations are obtained is not directly relevant to answer our research
question. Following Dittadi et al. (2021b), we chose to focus on β-VAE and Ada-GVAE
models, as they were shown to provide a broad set of representations, including fully
disentangled ones. Although we conjecture that other classes of representation learning
algorithms should generally reveal similar trends as those found in our study, this
is undoubtedly an interesting extension. As for the RL algorithm used in this work,
SAC is known to be a particularly sample-efficient model-free RL method that is a
popular choice in robotics (Haarnoja et al., 2018a; Kiran et al., 2021; Singh et al.,
2019). Extensive results on pushing from ground-truth features on the same setup in
Ahmed et al. (2021) indicate that methods like TD3 (Fujimoto, Hoof, and Meger, 2018)
or PPO (Schulman et al., 2017) perform very similarly to SAC under the same reward
structure and observation space. Thus, we expect the results of our study to hold
beyond SAC. Another interesting direction is the study of additional regularization
schemes on the policy network, an aspect that is often overlooked in RL. We expect
the potential insights from extending the study along these axes to not justify the
additional compute costs and corresponding carbon footprint. However, with improving
efficiency and decreasing costs, we believe these could become worthwhile validation
experiments in the future.

6.4 Results

We discuss our results in three parts: In Section 6.4.1, we present the training results
of our large-scale sweep, and how policy regularization and different properties of
the pretrained representations affect in-distribution reward. Section 6.4.2 gives an
extensive account of which metrics of the pretrained representations predict OOD
generalization of the agents in simulated environments. Finally, in Section 6.4.3 we
perform a similar evaluation on the real robot, in a zero-shot sim-to-real scenario.
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Figure 6.2. Top: Average training success, aggregated over all policies from the sweep
(median, quartiles, 5th/95th percentiles). Bottom: Rank correlations between representation
metrics and in-distribution reward (evaluated when the policies are fully trained), in the case
without regularization. Correlations are color-coded in red (positive) or blue (negative) when
statistically significant (p<0.05), otherwise they are gray.

6.4.1 Results in the training environment

Fig. 6.2 shows the training curves of all policies for object reaching and pushing in terms
of the task-specific success metric. Here we use success metrics for interpretability, as
their range is always [0, 1]. In object reaching, the success metric indicates progress
from the initial end effector position to the optimal distance from the center of the
cube. It is 0 if the final distance is not smaller than the initial distance, and 1 if the
end effector is touching the center of a face of the cube. In pushing, the success metric
is defined as the volumetric overlap of the cube with the goal cube, and the task can
be visually considered solved with a score around 80%.

From the training curves we can conclude that both tasks can be consistently solved
from pixels using pretrained representations. In particular, all policies on object reaching
attain almost perfect scores. Unsurprisingly, the more complex pushing task requires
significantly more training, and the variance across policies is larger. Nonetheless,
almost all policies learn to solve the task satisfactorily.

To investigate the effect of representations on the training reward, we now compute
its Spearman rank correlations with various supervised and unsupervised metrics of
the representations (Fig. 6.2 bottom). By training reward here we mean the average
reward of a fully trained policy over 200 episodes in the training environment (see
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Appendix B.1). On object reaching, the final reward correlates with the ELBO and
the reconstruction loss. A simple supervised metric to evaluate a representation is
how well a small downstream model can predict the ground-truth factors of variation.
Following Dittadi et al. (2021b), we use the MLP10000 and GBT10000 metrics (simply
MLP and GBT in the following), where MLPs and Gradient Boosted Trees (GBTs) are
trained to predict the FoVs from 10,000 samples. The training reward correlates with
these metrics as well, especially with the MLP accuracy. This is not entirely surprising:
if an MLP can predict the FoVs from the representations, our policies using the same
architecture could in principle retrieve the FoVs relevant for the task. Interestingly,
the correlation with the overall MLP metric mostly stems from the cube pose FoVs,
i.e. those that are not included in the ground-truth state xt. These results suggest
that these metrics can be used to select good representations for downstream RL. On
the more challenging task of pushing, the correlations are milder but most of them are
still statistically significant.

Summary. Both tasks can be consistently solved from pixels using pretrained repre-
sentations. Unsupervised (ELBO, reconstruction loss) and supervised (ground-truth
factor prediction) in-distribution metrics of the representations are correlated with
reward in the training environment.

6.4.2 Out-of-distribution generalization in simulation

In- and out-of-distribution rewards. After training, the in-distribution reward
correlates with OOD1 performance on both tasks (especially with regularization), but
not with OOD2 performance (see Fig. 6.3). Moreover, rewards in OOD1 and OOD2
environments are moderately correlated across tasks and regularization settings.

Unsupervised metrics and informativeness. In Fig. 6.4 (left) we assess the
relation between OOD reward and in-distribution metrics (ELBO, reconstruction loss,
MLP, and GBT). Both ELBO and reconstruction loss exhibit a correlation with OOD1
reward, but not with OOD2 reward. These unsupervised metrics can thus be useful
for selecting representations that will lead to more robust downstream RL tasks, as
long as the encoder is in-distribution. While the GBT score is not correlated with
reward under distribution shift, we observe a significant correlation between OOD1
reward and the MLP score, which measures downstream factor prediction accuracy
of an MLP with the same architecture as the one parameterizing the policies. As in
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Figure 6.3. Correlations between training (in distrib.) and OOD rewards (p<0.05).

Section 6.4.1, we further investigate the source of this correlation, and find it in the
pose parameters of the cube. Correlations in the OOD2 setting are much weaker, thus
we conclude that these metrics do not appear helpful for model selection in this case.
Our results on pushing confirm these conclusions although correlations are generally
weaker, presumably due to the more complicated nature of this task. An extensive
discussion is provided in Appendix B.2.2.

Correlations with generalization scores. Here we analyze the link between
generalization in RL and the generalization scores (GS) discussed in Section 6.2,
which measure the generalization of downstream FoV predictors out of distribution, as
opposed to the MLP and GBT metrics considered above. For both OOD scenarios, the
distribution shifts underlying these GS scores are the same as the ones in the RL tasks

Figure 6.4. Rank correlations of representation properties with OOD1 and OOD2 reward on
object reaching without regularization. Numbering when splitting metrics by FoV: (1) cube
color; (2–4) joint angles; (5–7) cube position and rotation. Correlations are color-coded as
described in Fig. 6.2.
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in simulation. We summarize our findings in Fig. 6.4 (right) on the object reaching
task. Reward in the OOD1 setting is significantly correlated with the GS-OOD1 metric
of the pretrained representation. We observe an even stronger correlation between
the reward in the simulated OOD2 setting and the corresponding GS-OOD2-sim and
GS-OOD2-real scores. On a per-factor level, we see that the source of the observed
correlations primarily stems from the generalization scores w.r.t. the pose parameters
of the cube. The OOD generalization metrics can therefore be used as proxies for
the corresponding form of generalization in downstream RL tasks. This has practical
implications for the training of RL downstream policies which are generally known to
be brittle to distribution shifts, as we can measure a representation’s generalization
score from a few labeled images. This allows for selecting representations that yield
more robust downstream policies.

Disentangled representations. Disentanglement has been shown to be helpful for
downstream performance and OOD1 generalization even with MLPs (Dittadi et al.,
2021b). However, in object reaching, we only observe a weak correlation with some
disentanglement metrics (Fig. 6.5). In agreement with (Dittadi et al., 2021b), disen-
tanglement does not correlate with OOD2 generalization. The same study observed
that disentanglement correlates with the informativeness of a representation. To
understand if these weak correlations originate from this common confounder, we
investigate whether they persist after adjusting for MLP FoV prediction accuracy.
Given two representations with similar MLP accuracy, does the more disentangled one
exhibit better OOD1 generalization? To measure this we predict success from the MLP
accuracy using kNN (k=5) (Locatello et al., 2019a) and compute the residual reward
by subtracting the amount of reward explained by the MLP metric. Fig. 6.5 shows
that this resolves the remaining correlations with disentanglement. Thus, for the RL
downstream tasks considered here, disentanglement per se does not seem to be useful
for OOD generalization. We present similar results on pushing in Appendix B.2.2.

Policy regularization and observation noise. It might seem unsurprising that
disentanglement is not useful for generalization in RL, as MLP policies do not have
any explicit inductive bias to exploit it. Thus, we attempt to introduce such inductive
bias by repeating all experiments with L1 regularization on the first layer of the policy.
Although regularization improves OOD1 and OOD2 generalization in general (see box
plots in Fig. 6.5), we observe no clear link with disentanglement. Furthermore, in
accordance with Dittadi et al. (2021b), we find that observation noise when training
representations is beneficial for OOD2 generalization. See Appendix B.2.2 for a detailed
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Figure 6.5. Box plots: fractional success on object reaching split according to low (blue),
medium-high (orange), and almost perfect (green) disentanglement. L1 regularization in the
first layer of the MLP policy has a positive effect on OOD1 and OOD2 generalization with
minimal sacrifice in terms of training reward (see scale). Correlation matrix (left): although
we observe a mild correlation between some disentanglement metrics and OOD1 (but not
OOD2) generalization, this does not hold when adjusting for representation informativeness.
Correlations are color-coded as described in Fig. 6.2. We use disentanglement metrics from
Chen et al. (2018), Eastwood and Williams (2018), Kumar, Sattigeri, and Balakrishnan (2018),
and Ridgeway and Mozer (2018).

discussion.

Stronger OOD shifts: evaluating on a novel shape. On object reaching, we
also test generalization w.r.t. a novel shape by replacing the cube with a sphere. This
corresponds to a strong OOD2-type shift, since shape was never varied when training
the representations. Surprisingly, the policies appear to be robust to the novel shape.
In fact, when the sphere has the same colors that the cube had during policy training,
all policies get closer than 5 cm to the sphere on average, with a mean success metric
of 95%. On sphere colors from the OOD1 split, more than 98.5% move the finger closer
than this threshold, and on the strongest distribution shift (OOD2-sim colors, and
cube replaced by sphere) almost 70% surpass that threshold with an average success
metric above 80%.

Summary. (1) In- and out-of-distribution rewards are correlated, as long as the
representation remains in its training distribution (OOD1). (2) Similarly, in-distribution
representation metrics (both unsupervised and supervised) predict OOD1 reward, but
are not reliable when the representation is OOD (OOD2). (3) Disentanglement does not
correlate with generalization in our experiments, while (4) input noise when training
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representations is beneficial for OOD2 generalization. (5) Most notably, the GS metrics,
which measure generalization under distribution shifts, are significantly correlated
with RL performance under similar distribution shifts. We thus recommend using
these convenient proxy metrics for selecting representations that will yield robust
downstream policies.

6.4.3 Deploying policies to the real world

We now evaluate a large subset of the agents on the real robot without fine-tuning,
quantify their zero-shot sim-to-real generalization, and find metrics that correlate with
real-world performance.

Reaching. We choose 960 policies trained in simulation, based on 96 representations
and 10 random seeds, and evaluate them on two (randomly chosen, but far apart) goal
positions using a red cube. While a red cube was in the training distribution, we consider
this to be OOD2 because real-world images represent a strong distribution shift for the
encoder (Dittadi et al., 2021b; Djolonga et al., 2021). Although sim-to-real in robotics
is considered to be very challenging without domain randomization or fine-tuning
(Finn et al., 2017; Rusu et al., 2017; Tobin et al., 2017), many of our policies obtain
a high fractional success without resorting to these methods. In addition, in Fig. 6.6
(left) we observe significant correlations between zero-shot real-world performance and
some of the previously discussed metrics. First, there is a positive correlation with
the OOD2-sim reward: Policies that generalize to unseen cube colors in simulation

Figure 6.6. Zero-shot sim-to-real on object reaching on over 2,000 episodes. Left:
Rank-correlations on the real platform with a red cube (color-coded as described in Fig. 6.2).
Middle: Training encoders with additive noise improves sim-to-real generalization. Right:
Histogram of fractional success in the more challenging OOD2-real-{green,blue} scenario from
50 policies across 4 different goal positions.
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also generalize to the real world. Second, representations with high GS-OOD2-sim
and (especially) GS-OOD2-real scores are promising candidates for sim-to-real transfer.
Third, if no labels are available, the weaker correlation with the reconstruction loss
on the simulated images can be exploited for representation selection. Finally, as
observed by Dittadi et al. (2021b) for simple downstream tasks, input noise while
learning representations is beneficial for sim-to-real generalization (Fig. 6.6, middle).

Based on these findings, we select 50 policies with a high GS-OOD2-real score, and
evaluate them on the real world with a green and a blue cube, which is an even
stronger OOD2 distribution shift. In Fig. 6.6 (right), where metrics are averaged
over 4 cube positions per policy, we observe that most policies can still solve the task:
approximately 80% of them position the finger less than 5 cm from the cube. Lastly, we
repeat the evaluations on the green sphere that we previously performed in simulation,
and observe that many policies successfully reach this completely novel object. See
Appendix B.2.3 and the project website for additional results and videos of deployed
policies.

Pushing. We now test whether our real-world findings on object reaching also hold
for pushing. We again select policies with a high GS-OOD2-real score and encoders
trained with input noise. We record episodes on diverse goal positions and cube
colors to support our finding that pushing policies in simulation can generalize to the

Figure 6.7. We select pushing policies with high GS-OOD2-real score. When deployed
on the real robot without fine-tuning, they succeed in pushing the cube to a specified goal
position (transparent blue cube).
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real robot. In Fig. 6.7, we show three representative episodes with successful task
completions and refer to the project site for video recordings and further episodes.

Summary. Policies trained in simulation can solve the task on the real robot without
domain randomization or fine-tuning. Reconstruction loss, encoder robustness, and
OOD2 reward in simulation are all good predictors of real-world performance. For
real-world applications, we recommend using GS-OOD2-sim or GS-OOD2-real for
model selection, and training the encoder with noise.

6.5 Other related work

A key unsolved challenge in RL is the brittleness of agents to distribution shifts in
the environment, even if the underlying structure is largely unchanged (Ahmed et al.,
2021; Cobbe et al., 2019). This is related to studies on representation learning and
generalization in downstream tasks (Chaabouni et al., 2020; Dittadi et al., 2022a;
Esmaeili et al., 2019a; Gondal et al., 2019; Steenbrugge et al., 2018), as well as
domain generalization (see Wang et al. (2021) for an overview). More specifically
for RL, Higgins et al. (2017b) focus on domain adaptation and zero-shot transfer
in DeepMind Lab and MuJoCo environments, and claim disentanglement improves
robustness. To obtain better transfer capabilities, Asadi, Abel, and Littman (2020)
argue for discretizing the state space in continuous control domains by clustering states
where the optimal policy is similar. Kulkarni et al. (2015) propose geometric object
representations by means of keypoints or image-space coordinates and Wulfmeier et al.
(2021) investigate the effect of different representations on the learning and exploration
of different robotics tasks. Transfer becomes especially challenging from the simulation
to the real world, a phenomenon often referred to as the sim-to-real gap. This is
particularly crucial in RL, as real-world training is expensive, requires sample-efficient
methods, and is sometimes unfeasible if the reward structure requires accurate ground
truth labels (Dulac-Arnold, Mankowitz, and Hester, 2019; Kormushev, Calinon, and
Caldwell, 2013). This issue is typically tackled with large-scale domain randomization
in simulation (Akkaya et al., 2019; James et al., 2019).
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6.6 Conclusion

Robust out-of-distribution (OOD) generalization is still one of the key open challenges
in machine learning. We attempted to answer central questions on the generalization
of reinforcement learning agents in a robotics context, and how this is affected by
pretrained representations. We presented a large-scale empirical study in which
we trained over 10,000 downstream agents given pretrained representations, and
extensively tested them under a variety of distribution shifts, including sim-to-real. We
observed agents that generalize OOD, and found that some properties of the pretrained
representations can be useful to predict which agents will generalize better. We believe
this work brings us one step closer to understanding the generalization abilities of
learning systems, and we hope that it encourages many further important studies in
this direction.
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Abstract. The idea behind object-centric representation learning is that natural
scenes can better be modeled as compositions of objects and their relations as opposed
to distributed representations. This inductive bias can be injected into neural networks
to potentially improve systematic generalization and performance of downstream tasks
in scenes with multiple objects. In this paper, we train state-of-the-art unsupervised
models on five common multi-object datasets and evaluate segmentation metrics
and downstream object property prediction. In addition, we study generalization
and robustness by investigating the settings where either a single object is out of
distribution—e.g., having an unseen color, texture, or shape—or global properties
of the scene are altered—e.g., by occlusions, cropping, or increasing the number of
objects. From our experimental study, we find object-centric representations to be
useful for downstream tasks and generally robust to most distribution shifts affecting
objects. However, when the distribution shift affects the input in a less structured
manner, robustness in terms of segmentation and downstream task performance may
vary significantly across models and distribution shifts.
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7.1 Introduction

In object-centric representation learning, we make the assumption that visual scenes
are composed of multiple entities or objects that interact with each other, and exploit
this compositional property as inductive bias for neural networks. Informally, the
goal is to find transformations r of the data x into a set of vector representations
r(x) = {zk} each corresponding to an individual object, without supervision (Burgess
et al., 2019; Chen, Deng, and Ahn, 2020; Crawford and Pineau, 2019; Engelcke et al.,
2020; Eslami et al., 2016; Greff et al., 2019; Greff, Steenkiste, and Schmidhuber, 2017;
Gregor et al., 2015; Kosiorek et al., 2018; Lin et al., 2020b; Locatello et al., 2020d;
Mnih, Heess, Graves, et al., 2014; Weis et al., 2020; Yuan, Li, and Xue, 2019). Relying
on this inductive bias, object-centric representations are conjectured to be more robust
than distributed representations, and to enable the systematic generalization typical
of symbolic systems while retaining the expressiveness of connectionist approaches
(Bengio, Courville, and Vincent, 2013; Greff, Steenkiste, and Schmidhuber, 2020; Lake
et al., 2017; Schölkopf et al., 2021). Grounding for these claims comes mostly from
cognitive psychology and neuroscience (Spelke, 1990; Téglás et al., 2011; Wagemans,
2015). E.g., infants learn about the physical properties of objects as entities that
behave consistently over time (Baillargeon, Spelke, and Wasserman, 1985; Spelke and
Kinzler, 2007) and are able to re-apply their knowledge to new scenarios involving
previously unseen objects (Dehaene, 2020). Similarly, in complex machine learning
tasks like physical modelling and reinforcement learning, it is common to train from the
internal representation of a simulator (Battaglia et al., 2016; Sanchez-Gonzalez et al.,
2020) or of a game engine (Berner et al., 2019; Vinyals et al., 2019) rather than from
raw pixels, as more abstract representations facilitate learning. Finally, learning to
represent objects separately is a crucial step towards learning causal models of the data
from high-dimensional observations, as objects can be interpreted as causal variables
that can be manipulated independently (Schölkopf et al., 2021). Such causal models
are believed to be crucial for human-level generalization (Pearl, 2009; Peters, Janzing,
and Schölkopf, 2017), but traditional causality research assumes causal variables to be
given rather than learned (Schölkopf, 2019).

As object-centric learning developed recently as a subfield of representation learning,
we identify three key hypotheses and design systematic experiments to test them.
(1) The unsupervised learning of objects as pretraining task is useful for downstream
tasks. Besides learning to separate objects without supervision, current approaches are
expected to separately represent information about each object’s properties, so that
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the representations can be useful for arbitrary downstream tasks. (2) In object-centric
models, distribution shifts affecting a single object do not affect the representations
of other objects. If objects are to be represented independently of each other to
act as compositional building blocks for higher-level cognition (Greff, Steenkiste,
and Schmidhuber, 2020), changes to one object in the input should not affect the
representation of the unchanged objects. This should hold even if the change leads to an
object being out of distribution (OOD). (3) Object-centric models are generally robust
to distribution shifts, even if they affect global properties of the scene. Even if the whole
scene is OOD—e.g., if it contains more objects than in the training set—object-centric
approaches should be robust thanks to their inductive bias.

In this paper, we systematically investigate these three concrete hypotheses by re-
implementing popular unsupervised object discovery approaches and testing them
on five multi-object datasets.1 We find that: (1) Object-centric models achieve
good downstream performance on property prediction tasks. We also observe a
strong correlation between segmentation metrics, reconstruction error, and downstream
property prediction performance, suggesting potential model selection strategies. (2) If
a single object is out of distribution, the overall segmentation performance is not
strongly impacted. Remarkably, the downstream prediction of in-distribution (ID)
objects is mostly unaffected. (3) Under more global distribution shifts, the ability to
separate objects depends significantly on the model and shift at hand, and downstream
performance may be severely affected.

As an additional contribution, we provide a library2 for benchmarking object-centric
representation learning, which can be extended with more datasets, methods, and
evaluation tasks. We hope this will foster further progress in the learning and evaluation
of object-centric representations.

7.2 Study design and hypotheses

Problem definition: Vanilla deep learning architectures learn distributed representa-
tions that do not capture the compositional properties of natural scenes—see, e.g., the
“superposition catastrophe” (Bowers et al., 2014; Greff, Steenkiste, and Schmidhuber,

1Training and evaluating all the models for the main study requires approximately 1.44 GPU years
on NVIDIA V100.

2https://github.com/addtt/object-centric-library

https://github.com/addtt/object-centric-library


100 7 Paper III

2020; Von Der Malsburg, 1986). Even in disentangled representation learning (Chen
et al., 2018; Eastwood and Williams, 2018; Higgins et al., 2017a; Kim and Mnih, 2018;
Kumar, Sattigeri, and Balakrishnan, 2018; Ridgeway and Mozer, 2018), factors of
variations are encoded in a vector representation that is the output of a standard CNN
encoder. This introduces an unnatural ordering of the objects in the scene and fails
to capture its compositional structure in terms of objects. Formally defining objects is
challenging (Greff, Steenkiste, and Schmidhuber, 2020) and there is no consensus even
outside of machine learning (Green, 2019; Smith, 1998). Greff, Steenkiste, and Schmid-
huber (2020) put forth three properties for object-centric representations: separation,
i.e., object features in the set of vectors r(x) do not interact with each other, and each
object is individually captured in a single element of r(x); common format, i.e., each
element of r(x) shares the same representational format; and disentanglement, i.e.,
each element of r(x) is represented in a disentangled format that exposes the factors of
variation. In this paper, we consider representations r(x) that are sets of vectors with
each element sharing the representational format. We take a pragmatic perspective
and focus on two clear desiderata for object-centric approaches:

Desideratum 1: Object embodiment. The representation should contain information
about the object’s location and its embodiment in the scene. As we focus on unsu-
pervised object discovery, this translates to segmentation masks. This is related to
separation and common format, as the decoder is applied to the elements of r(x) with
shared parameters.

Desideratum 2: Informativeness of the representation. Instead of learning disen-
tangled representations of objects, which is challenging even in single-object scenarios
(Locatello et al., 2019b), we want the representation to contain useful information for
downstream tasks, not necessarily in a disentangled format. We define objects through
their properties as annotated in the datasets we consider, and predict these properties
from the representations. Note that this may not be the only way to define objects
(e.g., defining faces and edges as objects and deducing shapes as composition of those).
The fact that existing models learn informative representations is our first hypothesis
(see below).

Design principle: These desiderata offer well-defined quantitative evaluations for
object-centric approaches and we want to understand the implications of learning
such representations. To this end, we train four different state-of-the-art methods on
five datasets, taking hyperparameter configurations from the respective publications
and adapting them to improve performance when necessary. Assuming these models
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succeeded in learning an object-centric representation, we investigate the following
hypotheses.

Hypothesis 1: The unsupervised learning of objects as pretraining task is useful for
downstream tasks. Existing empirical evaluations largely focus on our Desideratum 1
and evaluate the performance at test time in terms of segmentation metrics. The hope,
however, is that the representation would be useful for other downstream tasks besides
segmentation (Desideratum 2 ). We test this hypothesis by training small downstream
prediction models on the frozen object-representations with shared parameters to
predict the object properties. We match the predictions to the ground-truth properties
with the Hungarian algorithm (Kuhn, 1955) following Locatello et al. (2020d).

Hypothesis 2: In object-centric models, distribution shifts affecting a single object do
not affect the representations of other objects. A change in the properties of one object
in the input should not affect the representation of the other objects. Even OOD
objects with previously unseen properties should be segmented correctly by a network
that learned the notion of objects (Greff, Steenkiste, and Schmidhuber, 2020; Schölkopf
et al., 2021). We test this hypothesis by (1) evaluating the segmentation of the scene
after the distribution shift, and (2) training downstream models to predict object
properties, and evaluating them on representations extracted from scenes with one OOD
object. More specifically, we test changes in the shape, color, or texture of one object.

Hypothesis 3: Object-centric models are generally robust to distribution shifts, even
if they affect global properties of the scene. Early evidence (Romijnders et al., 2021)
points to the conjecture that learning object-centric representations biases the network
towards learning more robust representations of the overall scene. Intuitively, the
notion of objects is an additional inductive bias for the network to exploit to maintain
accurate predictions if simple global properties of the scene are altered. We test this
hypothesis by training downstream models to predict object properties, and evaluating
them on representations of scenes with OOD global properties. In this case, we test
robustness by cropping, introducing occlusions, and increasing the number of objects.

7.3 Experimental setup

Here we provide an overview of our experimental setup. After introducing the relevant
models and datasets, we outline the evaluation protocols for segmentation accuracy
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Figure 7.1. Top: examples from the five datasets in this study. Bottom: distribution
shifts in CLEVR.

(Desideratum 1) and downstream task performance (Desideratum 2). Then, we discuss
the distribution shifts that we use to test robustness—the aforementioned evaluations
are repeated once again under these distribution shifts. We conclude with a discussion
on the limitations of this study.

Models and datasets. We implement four state-of-the-art object-centric models—
MONet (Burgess et al., 2019), GENESIS (Engelcke et al., 2020), Slot Attention (Lo-
catello et al., 2020d), and SPACE (Lin et al., 2020b)—as well as vanilla variational
autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014) as baselines for distributed representations. We use one VAE variant with a
broadcast decoder (Watters et al., 2019) and one with a regular convolutional decoder.
See Appendix C.1 for an overview of the models with implementation details. We
then collect five popular multi-object datasets: Multi-dSprites, Objects Room, and
Tetrominoes from DeepMind’s Multi-Object Datasets collection (Kabra et al., 2019),
CLEVR (Johnson et al., 2017), and Shapestacks (Groth et al., 2018). The datasets are
shown in Fig. 7.1 (top row) and described in detail in Appendix C.2. For each dataset,
we define train, validation, and test splits. The test splits, which always contain at
least 2000 images, are exclusively used for evaluation. We train each model on all
datasets, using 10 random seeds for object-centric models and 5 for each VAE variant,
resulting in 250 models in total.

Metrics. We evaluate the segmentation accuracy of object-centric models with
the Adjusted Rand Index (ARI) (Hubert and Arabi, 1985), Segmentation Covering
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(SC) (Arbelaez et al., 2010), and mean Segmentation Covering (mSC) (Engelcke et al.,
2020). For all models, we additionally evaluate reconstruction quality via the mean
squared error (MSE). Appendix C.3.1 includes detailed definitions of these metrics.

Downstream property prediction. We evaluate object-centric representations
by training downstream models to predict ground-truth object properties from the
representations. More specifically, exploiting the fact that object slots share a common
representational format, a single downstream model f can be used to predict the
properties of each object independently: for each slot representation zk we predict
a vector of object properties ŷk = f(zk). As in previous work on object property
prediction (Locatello et al., 2020d), each model simultaneously predicts all properties
of an object. For learning, we use the cross-entropy loss for categorical properties
and MSE for numerical properties, and denote by `(ŷk,ym) the overall loss for a
single object, where ym are its ground-truth properties. Here k ∈ {1, . . . ,K} and
m ∈ {1, . . . ,M} with K the number of slots and M the number of objects. In order
to optimize the downstream models, the vector ŷk (the properties predicted from the
kth representational slot) needs to be matched to the ground-truth properties ym of
the mth object. This is done by computing a M ×K matrix of matching losses for
each slot–object pair, and then solving the assignment problem using the Hungarian
algorithm (Kuhn, 1955) to minimize the total matching loss, which is the sum of
min(M,K) terms from the loss matrix. As matching loss we use either the negative
cosine similarity between predicted and ground-truth masks (as in Greff et al. (2019)),
or the downstream loss `(ŷk,ym) itself (as in Locatello et al. (2020d)). In the following,
we will refer to these strategies as mask matching and loss matching, respectively.
For property prediction, we use 4 different downstream models: a linear model, and
MLPs with up to 3 hidden layers of size 256 each. Given a pretrained object-centric
model, we train each downstream model on the representations of 10 000 images. The
downstream models are then tested on 2000 held-out images from the test set, which
may exhibit distribution shifts as discussed below. Further details on this evaluation
are provided in Appendix C.3.2

Evaluating distributed representations. Since in non-slot-based models, such
as classical VAEs, the representations of the single objects are not readily available,
matching representations to objects for downstream property prediction is not trivial.
Although this is an inherent limitation of distributed representations, we are nevertheless
interested in evaluating their usefulness. Using the matching framework presented above,
we require the downstream model f to output the predicted properties of all objects,
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and then match these with the true object properties to evaluate prediction quality. Our
downstream model in this case will thus take as input the entire representation z = r(x)
(which is now a single vector rather than a set of vectors) and output the predictions
for all objects together as a vector f(z). Finally, we split f(z) into K vectors {ŷk}Kk=1,
where K loosely corresponds to the number of slots in object-centric models. At this
point, we can compute the loss `(ŷk,ym) for each pair, as usual. We now consider two
matching strategies: As before, loss matching simply defines the matching loss of a
slot–object pair as the prediction loss itself. In the deterministic matching strategy,
following Greff et al. (2019), we lexicographically sort objects according to a canonical
order of object properties. Calling π the permutation that defines this sorting, the kth
slot is deterministically matched with the mth object, where m = π−1(k).

Baselines. To correctly assess performance on downstream tasks, it is fundamental to
compare with sensible baselines. Here we consider as baseline the best performance
that can be achieved by a downstream model that outputs a constant vector that does
not depend on the image. When predicting properties independently for each object (in
slot-based models), the optimal solution is to predict the mean of continuous properties
and the majority class for categorical ones. When using deterministic matching in
the distributed case, the downstream model can exploit the predefined total order to
predict more accurately than random guessing even without using information from
the input (this effect is non-negligible only for the properties that are most significant
in the order). Finally, in a few cases, loss matching for distributed representations
can be significantly better than deterministic matching.3 For simplicity, for both
matching strategies in the distributed case, we directly learn a vector ŷ by gradient
descent to minimize the prediction loss. As this depends on random initialization and
optimization dynamics, we repeat this for 10 random seeds and report error bars in
the plots.

Distribution shifts. We test the robustness of the learned representations under
two classes of distribution shifts: one where one object goes OOD, and one where
global properties of the scene are changed. All such distribution shifts occur at test
time, i.e., the unsupervised models are always trained on the original datasets. To
evaluate generalization to distribution shifts affecting a single object, we systematically
induce changes in the color, shape, and texture of objects. To change color, we apply a
random color shift to one random object in the scene, using the available masks (we do

3Intuitively, a (constant) diverse set of uninformed predictions {ŷk} might be sufficient for the
matching algorithm to find suitable enough objects for most predictions.
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not do this in Multi-dSprites, as the training distribution covers the entire RGB color
space). To test robustness to unseen textures, we apply neural style transfer (Gatys,
Ecker, and Bethge, 2016) to one random object in each scene, using The Great Wave
off Kanagawa as style image. When either a new color or a new texture is introduced,
prediction of material (in CLEVR only) and color is not performed. To introduce
a new shape, we select images from Multi-dSprites that have at most 4 objects (in
general, they have up to 5), and add a randomly colored triangle, in a random position,
at a random depth in the object stack. In this case, shape prediction does not apply.
Finally, to test robustness to global changes in the scene, we change the number of
objects (in CLEVR only), introduce occlusions (a gray square at a random location),
or crop images at the center and restore their original size via bilinear interpolation.
See Fig. 7.1 for examples, and Appendix C.3.3 for further details.

Limitations of this study. While we aim to conduct a sound and informative
experimental study to answer the research questions from Section 7.3, inevitably there
are limitations regarding datasets, models, and evaluations. Although the datasets
considered here vary significantly in complexity and visual properties, they all consist of
synthetic images where object properties are independent of each other and independent
between objects. Regarding object-centric models, we only focus on autoencoder-based
approaches that model a scene as a mixture of components. As official implementations
are not always available, and none of the methods in this work has been applied to all the
datasets considered here, we re-implement these methods and choose hyperparameters
following a best-effort approach. Finally, we only consider the downstream task of
object property prediction, and assess generalization using only a few representative
single-object and global distribution shifts.

7.4 Results

In this section, we highlight our findings with plots that are representative of our main
results. The full experimental results are presented in Appendix C.4. In Section 7.4.1
we focus on the different evaluation metrics and the performance we obtained re-
training the methods considered in this study. We then focus on our three hypotheses
in Sections 7.4.2 to 7.4.4.
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7.4.1 Learning and evaluating object discovery

Since all methods included in our study were originally evaluated only on a subset of
the datasets and metrics considered here, we first test how well these models perform.

Fig. 7.2 shows the segmentation performance of the models in terms of ARI across
models, datasets, and random seeds. Fig. C.3 in Appendix C.4 provides an overview
of the reconstruction MSE and all segmentation metrics. Although these results are in
line with published work, we observe substantial differences in the ranking between
models depending on the metric. This indicates that, in practice, these metrics are not
equivalent for measuring object discovery.

This is confirmed in Fig. 7.3, which shows rank correlations between metrics on
different datasets (aggregating over different models). We also observe a strong negative
correlation between ARI and MSE across models and datasets, suggesting that models
that learn to more accurately reconstruct the input tend to better segment objects
according to the ARI score. This trend is less consistent for the other segmentation
metrics, as MSE significantly correlates with mSC in only three datasets (Multi-dSprites,
Objects Room, and CLEVR), and with SC in two (Multi-dSprites and Objects Room).
SC and mSC measure very similar segmentation notions and therefore are significantly
correlated in all datasets, although to a varying extent. However, they correlate
with ARI only on two and three datasets, respectively (the same datasets where they
correlate with the MSE).

Summary: We observe strong differences in performance and ranking between the
models depending on the evaluation metric. In the tested datasets, we find that
the ARI, which requires ground-truth segmentation masks to compute, correlates
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Figure 7.2. ARI of all models and datasets on 2000 test images. Medians and 95% confidence
intervals with 10 seeds.
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Figure 7.3. Spearman rank correlations between evaluation metrics across models and
random seeds (color-coded only when p<0.05).

particularly well with the MSE, which is unsupervised and provides training signal.

7.4.2 Usefulness for downstream tasks (Hypothesis 1)

To test Hypothesis 1, we first evaluate whether frozen object-centric representations
can be used to train downstream models measuring Desideratum 2 from Section 7.2.
As discussed in Section 7.3, this type of downstream task requires matching the true
object properties with the predictions of the downstream model. In the following,
we will only present results obtained with loss matching, and show results for other
matching strategies in Appendix C.4.

Fig. 7.4 shows downstream prediction performance on all datasets and models, when
the downstream model is a single-layer MLP. Although results vary across datasets
and models, accurate prediction of object properties seems to be possible in most of

Figure 7.4. Comparison of downstream property prediction performance for object-centric
(slot-based) and distributed (VAE) representations, using an MLP with one hidden layer as
downstream model. The metric is accuracy for categorical properties or R2 for numerical
ones. The baselines in gray indicate the best performance that can be achieved by a model
that outputs a constant vector that does not depend on the input. The bars show medians
and 95% confidence intervals with 10 random seeds.
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the scenarios considered here. Fig. C.5 in Appendix C.4 shows similar results when
using a linear model or MLPs with up to 3 hidden layers.

In Fig. 7.4, we also compare the downstream prediction performance from object-centric
and distributed representations. We observe that VAE representations tend to achieve
lower scores in downstream prediction, although not always by a large margin. In
particular, color and size in CLEVR and color in Tetrominoes are predicted relatively
well, and significantly better than the baseline. On the other hand, in many cases where
VAE representations perform well, they have in fact a considerable advantage if we
take the baselines into account (scale in Multi-dSprites, color in Shapestacks, x and y
in CLEVR, Multi-dSprites, and Tetrominoes). Moreover, performance from distributed
representations often does not improve significantly when using a larger downstream
model (see Fig. C.6). In conclusion, although the two classes of representations are
difficult to compare on this task, these results suggest that the quantities of interest
are present in the VAE representations, but they appear to be less explicit and less
easily usable.

Finally, we investigate the relationship between downstream performance and evaluation
metrics. Fig. 7.5 shows the Spearman rank correlation of the segmentation and
reconstruction metrics with the test performance of downstream predictors. For all
datasets and object properties, downstream performance is strongly correlated with
the ARI. On the other hand, SC and mSC exhibit inconsistent trends across datasets.
Models that correctly separate objects according to the ARI are therefore useful
for downstream object property prediction, confirming Hypothesis 1. Downstream
prediction performance is also significantly correlated with the reconstruction MSE in
all datasets. This is not particularly surprising, since the representation of a model
that cannot properly reconstruct the input might not contain the information necessary
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for property prediction. However, the correlation is generally stronger with the ARI
than with the MSE, suggesting that having a notion of objects is more important for
downstream tasks than reconstruction accuracy. This is consistent with the findings
by Papa, Winther, and Dittadi (2022), where the ARI still correlates strongly with
downstream performance when objects have complex textures, while the MSE does
not. When segmentation masks are available for validation, ARI should therefore be
the preferred metric to select useful representations for downstream tasks. Fig. C.7
in Appendix C.4 shows analogous results for mask matching and for the three other
downstream models—these results are broadly similar, except that correlations with
ARI tend to be stronger when using mask matching (perhaps unsurprisingly) or larger
downstream models.

Summary: Models that accurately segment objects allow for good downstream
prediction performance. Despite often having an advantage, distributed representations
generally perform worse, but not always significantly: the information is present but
less easily accessible. The ARI is consistently correlated with downstream performance,
and is therefore useful for model selection when masks are available. The MSE can be
a practical unsupervised alternative on these datasets, but it may be less robust on
complex textures.

7.4.3 Generalization with one OOD object (Hypothesis 2)

To test Hypothesis 2, we construct settings where a single object is OOD and the others
are ID. We change the object style with neural style transfer, change the color of one
object at random (only in CLEVR, Tetrominoes, and Shapestacks), or introduce a new
shape (only in Multi-dSprites). The unsupervised models are always trained on the
original datasets. Then we train downstream models to predict the object properties
from the learned representations. We consider two scenarios for this task: (1) train the
predictors on the original datasets and test them on the variants with a modified object,
(2) train and test the predictors on each variant. In both cases, we test the predictors on
representations that might be inaccurate, because the representation function (encoder)
is OOD. However, since in case (2) the downstream model is trained under distribution
shift, this experiment quantifies the extent to which the representation can still be used
by a downstream task that is allowed to adapt to the shift—although the representation
might no longer represent objects faithfully, it could still contain useful information.
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Figure 7.6. Effect of single-object distribution shifts on the ARI. Medians and 95% confidence
intervals with 10 random seeds.

For Desideratum 1, we observe in Fig. 7.6 that the models are generally robust to
distribution shifts affecting a single object. Introducing a new color or a new shape
typically does not affect segmentation quality (but note Slot Attention on Tetrominoes),
while changing the texture of an object via neural style transfer leads to a moderate
drop in ARI in some cases. In Fig. C.8 (Appendix C.4) we observe that SC and mSC
show a compatible but less pronounced trend, while the MSE more closely mirrors the
ARI. We conclude that the encoder is still partially able to separate objects when one
object undergoes a distribution shift at test time.

For Desideratum 2, we observe in Fig. 7.7 (left) that property prediction performance for
objects that underwent distribution shifts (color, shape, or texture) is often significantly
worse than in the original dataset, whereas the prediction of ID objects is largely
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Figure 7.7. ID vs OOD downstream performance with single-object distribution shifts.
All datasets, models, and object properties are shown. Metrics: accuracy for categorical
attributes, R2 for numerical attributes. The downstream model (an MLP with one hidden
layer) is tested zero-shot out-of-distribution (left) or retrained after the distribution shift has
occurred (right).
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unaffected. This is in agreement with Hypothesis 2: changes to one object do not
affect the representation of other objects, even when these objects are OOD. Extensive
results, including further splits and all downstream models, are shown in Fig. C.10 in
Appendix C.4. On the right plot in Fig. 7.7, we observe that retraining the downstream
models after the distribution shifts does not lead to significant improvements. This
suggests that the shifts introduced here negatively affect not only the downstream model,
but also the representation itself. This result also holds with different downstream
models and with mask matching (see Figs. C.11 and C.13). While in principle we
observe a similar trend for VAEs (see e.g. Figs. C.18 and C.19 in Appendix C.4),
their performance is often too close to the respective baseline (Fig. 7.4) for a definitive
conclusion to be drawn.

Summary: The models are generally robust to distribution shifts affecting a single
object. Downstream prediction is largely unaffected for ID objects, but may be severely
affected for OOD objects. Finally, there seems to be no clear benefit in retraining
downstream models after the shifts, indicating that the deteriorated representations
cannot easily be adjusted post hoc.

7.4.4 Robustness to global shifts (Hypothesis 3)

Finally, we investigate the robustness of object-centric models to transformations
changing the global properties of a scene at test time. Here, we consider variants of
the datasets with occlusions, cropping, or more objects (only on CLEVR). We train
downstream predictors on the original datasets and report their test performance on
the dataset variants with global shifts. As before, we also report results of downstream
models retrained on the OOD datasets.
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Figure 7.8. Effect of distribution shifts on global scene properties on the ARI. Medians and
95% confidence intervals with 10 seeds.
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For Desideratum 1, Fig. 7.8 shows that segmentation quality is generally only marginally
affected by occlusion, but cropping often leads to a significant degradation. In CLEVR,
the effect on the ARI of increasing the number of objects is comparable to the effect
of occlusions, which suggests that learning about objects is useful for this type of
systematic generalization. These trends persist when considering SC and mSC, but
appear less pronounced and less consistent across datasets (see Fig. C.9 in Appendix C.4
for detailed results). As might be expected, when the number of objects is increased
in CLEVR, the MSE increases more conspicuously for VAEs than for object-centric
models (Fig. C.9, bottom left), likely due to their explicit modeling of objects. However,
Fig. C.32 shows that VAEs may, in fact, generalize relatively well to an unseen number
of objects, although not nearly as well as some object-centric models.

For Desideratum 2, we train a downstream model on the original dataset and test
it under global distribution shifts. These shifts generally have a negative effect on
downstream property prediction (Fig. 7.9, left), although this is comparable to the
effect on OOD objects when only one object is OOD. This is in agreement with the
observation made in Section 7.4.3 that these shifts negatively affect the representation,
which is no longer accurate because the encoder is OOD (cf. the “OOD2” scenario in
Dittadi et al. (2021b)). When retraining the downstream models on the OOD datasets
while keeping the representation frozen, the performance improves slightly but does
not reach the corresponding results on the training distribution (Fig. 7.9, right), as in
Section 7.4.3. These observations also hold for different downstream models and with
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Figure 7.9. ID vs OOD downstream performance with global distribution shifts.
All datasets, models, and object properties are shown. Metrics: accuracy for categorical
attributes, R2 for numerical attributes. The downstream model (an MLP with one hidden
layer) is tested zero-shot out-of-distribution (left) or retrained after the distribution shift has
occurred (right).
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mask matching (Figs. C.14 to C.17), as well as for distributed representations (see,
e.g., Fig. C.22) although with similar caveats as in Section 7.4.3.

Summary: The impact of global distribution shifts on the segmentation capability of
object-centric models depends on the chosen shift; e.g., cropping consistently has a
significant effect. Moreover, the usefulness for downstream tasks decreases substantially
in many cases, and the performance of downstream prediction models cannot be
satisfactorily recovered by retraining them.

7.5 Other related work

Recent years have seen a number of systematic studies on disentangled representa-
tions (Locatello et al., 2019a; b; Steenkiste et al., 2019; Träuble et al., 2021), some of
which focusing on their effect on generalization (Dittadi et al., 2021b; 2022b; Esmaeili
et al., 2019b; Gondal et al., 2019; Montero et al., 2021). In the context of object-
centric learning, Engelcke, Jones, and Posner (2020) investigate their reconstruction
bottlenecks to understand how these models can separate objects from the input in
an unsupervised manner. In contrast, we specifically test some key implications of
learning object-centric representations.

Slot-based object-centric models can be classified according to their approach to
separating the objects at a representational level (Greff, Steenkiste, and Schmidhuber,
2020). In models that use instance slots (Chen, Artières, and Denoyer, 2019a; Goyal
et al., 2019; Greff et al., 2019; 2016; Greff, Steenkiste, and Schmidhuber, 2017; Huang
et al., 2020; Kipf et al., 2021; Kipf, Pol, and Welling, 2019; Le Roux et al., 2011;
Locatello et al., 2020d; Löwe et al., 2020; Racah and Chandar, 2020; Steenkiste et al.,
2018; 2020; Yang, Chen, and Soatto, 2020), each slot is used to represent a different part
of the input. This introduces a routing problem, because all slots are identical but they
cannot all represent the same object, so a mechanism needs to be introduced to allow
slots to communicate with each other. In models based on sequential slots (Burgess
et al., 2019; Engelcke et al., 2020; Engelcke, Parker Jones, and Posner, 2021; Eslami
et al., 2016; Kosiorek et al., 2018; Kossen et al., 2019; Stelzner, Peharz, and Kersting,
2019), the representational slots are computed in a sequential fashion, which solves the
routing problem and allows to dynamically change the number of slots, but introduces
dependencies between slots. In models based on spatial slots (Crawford and Pineau,
2019; 2020; Deng et al., 2021; Dittadi and Winther, 2019; Jiang* et al., 2020; Lin et al.,
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2020a; b; Nash et al., 2017), a spatial coordinate is associated with each slot, introducing
a dependency between slot and spatial location. In this work, we focus on four scene-
mixture models as representative examples of approaches based on instance slots (Slot
Attention), sequential slots (MONet and GENESIS), and spatial slots (SPACE).

7.6 Conclusions

In this paper, we identify three key hypotheses in object-centric representation learning:
learning about objects is useful for downstream tasks, it facilitates strong generalization,
and it improves overall robustness to distribution shifts. To investigate these hypothe-
ses, we re-implement and systematically evaluate four state-of-the-art unsupervised
object-centric learners on a suite of five common multi-object datasets. We find that
object-centric representations are generally useful for downstream object property pre-
diction, and downstream performance is strongly correlated with segmentation quality
and reconstruction error. Regarding generalization, we observe that when a single
object undergoes distribution shifts the overall segmentation quality and downstream
performance for in-distribution objects is largely unaffected. Finally, we find that
object-centric models can still relatively robustly separate objects even under global
distribution shifts. However, this may depend on the specific shift, and downstream
performance appears to be more severely affected.

An interesting avenue for future work is to continue our systematic investigation of
object-centric learning on more complex data with diverse textures, as well as a wide
range of more challenging downstream tasks. Furthermore, it would be interesting
to compare object-centric and non-object-centric models more fairly: while learning
about objects offers clear advantages, the full potential of distributed representations
in this context is still not entirely clear, particularly when scaling up datasets and
models. Finally, while we limit our study to unsupervised object discovery, it would be
relevant to consider methods that leverage some form of supervision when learning
about objects. We believe our benchmarking library will facilitate progress along these
and related lines of research.
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CHAPTER8
Conclusion

8.1 Summary

The central theme of this thesis is learning representations that reflect the data’s
underlying structure—e.g., by disentangling the ground-truth generative factors of
variation or by separately representing objects in a modular fashion—with little
or no supervision. In particular, we focused on the potential usefulness of these
representations for learning downstream tasks, where models such as classifiers or
reinforcement learning agents are trained downstream of pretrained representation
functions. Moreover, learning structured representations holds the promise of better
systematic generalization, which is a significant issue in modern deep learning. In this
dissertation, we investigated to what extent this may help in practice.

In the first two papers, we noted that disentanglement has been shown to be beneficial
for a variety of purposes, but thorough quantitative studies have so far largely focused
on (1) toy datasets and (2) simple contrived downstream tasks. In Paper I, we took a
step towards a more practically relevant scenario: robotic manipulation. We proposed
a new dataset and showed that fully disentangled representations can be learned in
this more complex setting by using weak supervision and more expressive neural archi-
tectures. We then investigated the role of disentanglement for generalization in simple
downstream tasks that consist in predicting the ground-truth factors of variation. In
Paper II, we extended this work to challenging robotic tasks, and studied the relation-
ship between properties of the pretrained representations, the generalization of simple
downstream tasks, and the generalization of downstream reinforcement learning agents.

We found that the the quality of the representations is generally affected by distribution
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shifts in the data, largely due to a lack of robustness of the learned representation
function. We called this scenario “OOD2” and showed that training with input noise is
a simple but effective strategy to improve encoder robustness. This is beneficial both
for simple downstream prediction tasks and for more complex robotic manipulation,
and allows for zero-shot sim-to-real transfer in both cases. Crucially, we did not
find evidence of other representation properties being particularly helpful for this
generalization scenario.

In contrast, when the representation function is in distribution but the downstream
model is out of distribution, we are effectively testing the OOD generalization of the
downstream model itself because, in this case, the representations can be assumed to be
accurate and meaningful. With this test scenario, which we called “OOD1”, we want
to answer the following question: are there properties of the pretrained representations
that lead downstream models to be generally robust to systematic distribution shifts? A
positive answer comes from Paper I, where we observed that representation functions
that perfectly separate the true factors of variation tend to lead to robust downstream
models for factor prediction (as long as the encoder remains in distribution). On
the other hand, when the representations are not fully disentangled, their degree of
entanglement does not seem to affect downstream generalization.

In the more challenging robotic tasks in Paper II, disentanglement does not seem to
be beneficial for downstream policies. However, we found that, given a pretrained
representation function, downstream factor predictors and reinforcement learning
agents generalize in similar ways. This can be very convenient in practice: to obtain
a downstream model that is robust to a specific class of distribution shifts, we can
pre-select promising upstream representation functions using a simpler proxy task
where we mirror the desired generalization scenarios of the target downstream task.

Finally, in Paper III, we considered images with multiple objects and studied the
implications of learning object-centric representations, with a particular focus on gen-
eralization. We observed that object-centric models that successfully separate objects
learn useful representations for simple downstream set-prediction tasks. Regarding
generalization, we found that object-centric models are particularly robust to dis-
tribution shifts that are in some sense related to the compositional structure of an
image—e.g., when the number of objects increases, or when a single object is out of
distribution—while the picture appears less clear when the shifts affect the data in a
less structured manner.
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8.2 Discussion

In this dissertation, we have studied representations that explicitly encode some of the
structure found in the data. Disentangled representations (at least in their traditional
formulation) separate factors of variation; object-centric representations, which are
strictly related to the former, focus on separating objects and are more suitable for
multi-object settings. A typical argument in favor of explicitly representing structure
in this manner is that it should facilitate systematic generalization, thereby narrowing
the gap with human-level intelligence. However, based on the findings and discussions
in this dissertation, a few remarks are in order.

First, while it may generally be true that encoding structure is beneficial for generaliza-
tion, the role of disentanglement appears to depend on both the downstream task and
the downstream model. A relevant direction for future work includes validating our
results on a broader range of representation learning methods, downstream tasks (e.g.,
abstract reasoning), and downstream models (e.g., different reinforcement learning
algorithms).

Second, in the multi-object setting, unstructured models (variational autoencoders in
our case) seem to generalize better than expected, although object-centric approaches
still have an edge due to their explicit inductive biases. Since quantitative comparisons
between these two classes of models are not entirely fair in our setup, future work should
attempt to fill this gap in order to clarify more precisely when and how structured
models are more useful than unstructured ones.

Finally, the argument that structured representations benefit generalization is not
necessarily valid when the representation function itself is out of distribution (the
OOD2 setting), since in that case it may not even be encoding information correctly.
In fact, we have shown in a variety of settings—both disentanglement and object-
centric learning; both in property prediction and in robotic tasks; and under various
distribution shifts—that the main bottleneck for OOD2 generalization is the robustness
of the encoder, rather than the format of the representations it computes. On the other
hand, our study on object-centric learning in Paper III suggests there may be some
useful inductive biases in object-centric models that make them relatively robust to
some distribution shifts (e.g., one OOD object). An interesting avenue for future work
is to systematically investigate these biases. As an orthogonal but related direction, it
would be valuable to study how different choices in the architecture, objective, and
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optimization affect the learning of useful and modular object representations, in order
to discover inductive biases that could enable scaling object-centric learning to real
data with minimal supervision.
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Supplementary material for

Chapter 5

A.1 Implementation Details

Training. We train the β-VAEs by maximizing the following objective function:

LβV AE = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)‖p(z)) ≤ log p(x)

with β > 0 using the Adam optimizer (Kingma and Ba, 2014) with default parameters.
We use a batch size of 64 and train for 400k steps. The learning rate is initialized to
1e-4 and halved at 150k and 300k training steps. We clip the global gradient norm to
1.0 before each weight update. Following Locatello et al. (2019b), we use a Gaussian
encoder with an isotropic Gaussian prior for the latent variable, and a Bernoulli decoder.
Our implementation of weakly supervised learning is based on Ada-GVAE (Locatello
et al., 2020b), but uses a symmetrized KL divergence:

D̃KL(p, q) = 1
2DKL(p‖q) + 1

2DKL(q‖p)

to infer which latent dimensions should be aggregated.

The noise added to the encoder’s input consists of two independent components, both
iid Gaussian with zero mean: one is independent for each subpixel (RGB) and has
standard deviation 0.03, the other is a 8× 8 pixel-wise (greyscale) noise with standard
deviation 0.15, bilinearly upsampled by a factor of 16. The latter has been designed
(by visual inspection) to roughly mimic observation noise in the real images due to
complex lighting conditions.
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Neural architecture. Architectural details are provided in Tables A.1 and A.2,
and Fig. A.1 provides a high-level overview. In preliminary experiments, we observed
that batch normalization, layer normalization, and dropout did not significantly affect
performance in terms of ELBO, model samples, and disentanglement scores, both in the
unsupervised and weakly supervised settings. On the other hand, layer normalization
before the posterior parameterization (last layer of the encoder) appeared to be
beneficial for stability in early training. While using an architecture based on residual
blocks leads to fast convergence, in practice we observed that it may be challenging to
keep the gradients in check at the beginning of training.1 In order to solve this issue,
we resorted to a simple scalar gating mechanism in the residual blocks (Bachlechner
et al., 2020) such that each residual block is initialized to the identity.

Datasets and OOD evaluation. Because we evaluate OOD generalization in terms
of cube color hue (except in the sim2real case), we first sampled 8 color hues at
random from the 12 specified in Table 5.1. The chosen hues are: [0◦, 120◦, 150◦, 180◦,
210◦, 270◦, 300◦, 330◦]. Then, the dataset D used for training VAEs is generated
by randomly sampling values for the factors of variation from Table 5.1, with the
color hue restricted to the above-mentioned values. This makes OOD2 evaluation
possible, specifically OOD2-A where the learned predictors are tested on representations
extracted from images with held-out values of the cube hue.

For evaluation of out-of-distribution generalization, we train the downstream predictors
on a subset D1 ⊂ D of the representation training set. The downstream training set
D1 is sampled at random from D but only contains a (not necessarily proper) subset
of the 8 cube colors. This subset contains 1 color in the OOD1-A case, 4 colors in
OOD1-B and OOD1-C, all 8 colors in OOD2 (in this case D1 is simply a random
subset of D). Then we test the downstream predictors on a set D2 distributionally
different from D1 in terms of cube color (all OOD1 scenarios as well as OOD2-A) or
sim2real (OOD2-B). In the OOD1 case, D2 is also a subset of D and is generated the
same way. In each OOD1 case, the test set D2 is paired with its corresponding D1

that was used to train the downstream predictors. D2 contains all colors in D minus
those in D1. In the OOD2-A case, D2 is a separate dataset containing 5k simulated
images like those in D, except that these only contain the 4 colors that were left out
from the VAE training set D (hue in [30◦, 60◦, 90◦, 240◦]). In the OOD2-B case, the

1This instability may also be exacerbated in probabilistic models by the sampling step in latent space,
where a large log variance causes the decoder input to take very large values. Intuitively, this might
be a reason why layer normalization before latent space appears to be beneficial for training stability.
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set D2 is the dataset of real images. Following previous work (e.g. the GBT10000
metric in Locatello et al. (2019b)), the training set D1 and test set D2 for downstream
tasks contain 10k and 5k images, respectively, except in the OOD2-B case, where the
size is limited by the size of the real dataset.
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Table A.1. Encoder (left) and decoder (right) architectures. The latent space dimensionality
is denoted by d, and K = 3 indicates the number of image channels. Last line in the encoder
architecture: the fully connected layer parameterizing the log variance of the approximate
posterior distributions of the latent variables has custom initialization. The weights are
initialized with 1/10 standard deviation than the default value, and the biases are initialized
to −1 instead of 0. Empirically, this together with (learnable) LayerNorm was beneficial for
training stability at the beginning of training.

Encoder
Operation Output Shape
Input 128×128×K
Conv 5x5, stride 2, 64 ch. 64×64×64
LeakyReLU(0.02) —
2x ResidualBlock(64) —
Conv 1x1, 128 channels 64×64×128
AveragePool(2) 32×32×128
2x ResidualBlock(128) —
AveragePool(2) 16×16×128
2x ResidualBlock(128) —
Conv 1x1, 256 channels 16×16×256
AveragePool(2) 8×8×256
2x ResidualBlock(256) —
AveragePool(2) 4×4×256
2x ResidualBlock(256) —
Flatten 4096
LeakyReLU(0.02) —
FC(512) 512
LeakyReLU(0.02) —
LayerNorm —
2x FC(d) 2d

Decoder
Operation Output Shape
Input d
FC(512) 512
LeakyReLU(0.02) —
FC(4096) 4096
Reshape 4×4×256
2x ResidualBlock(256) —
BilinearInterpolation(2) 8×8×256
2x ResidualBlock(256) —
Conv 1x1, 128 channels 8×8×128
BilinearInterpolation(2) 16×16×128
2x ResidualBlock(128) —
BilinearInterpolation(2) 32×32×128
2x ResidualBlock(128) —
Conv 1x1, 64 channels 32×32×64
BilinearInterpolation(2) 64×64×64
2x ResidualBlock(64) —
BilinearInterpolation(2) 128×128×64
LeakyReLU(0.02) —
Conv 5x5, K channels 128×128×K

Table A.2. Architecture of a residual block. The scalar gate is implemented by multiplying
the tensor by a learnable scalar parameter before adding it to the block input. Initializing the
residual block to the identity by setting this parameter to zero has been originally proposed
by Bachlechner et al. (2020). The tensor shape is constant throughout the residual block.

Residual Block
Input: shape H×W×C
LeakyReLU(0.02)
Conv 3x3, C channels
LeakyReLU(0.02)
Conv 3x3, C channels
Scalar gate
Sum with input
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Figure A.1. Schemes of the encoder (top) and decoder (bottom) architectures. In both
schemes, information flows left to right. Blue blocks represent convolutional layers: those
labeled “conv” have 5x5 kernels and stride 2, while those labeled “1x1” have 1x1 kernels. Each
orange block represents a pair of residual blocks (implementation details of a residual block
are provided in Table A.2). Green blocks in the encoder represent average pooling with stride
2, and those in the decoder denote bilinear upsampling by a factor of 2. Red blocks represent
fully-connected layers. The block labeled “norm” indicates layer normalization. Dashed lines
denote tensor reshaping.
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A.2 Additional Results

A.2.1 Dataset Correlations

Figure A.2. Feasible states of the 2nd and 3rd DoF when the angle of the 1st DoF is 0.
Angles are in radians.

Figure A.3. Density of feasible states of 2nd and 3rd DoF over the whole training dataset.
Darker shades of blue indicate regions of higher density. Angles are in radians.
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A.2.2 Samples and Reconstructions

Figure A.4. Samples generated by a trained model (selected based on the ELBO).

Figure A.5. Input reconstructions by a trained model. This model was selected based on
the ELBO. Image inputs are on odd columns, reconstructions on even columns.
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A.2.3 Latent Traversals

Figure A.6. From top to bottom: latent traversals for a model with low (0.15), medium
(0.5), and high (1.0) DCI score.
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A.2.4 Unsupervised Metrics and Disentanglement

Figure A.7. Scatter plots of unsupervised metrics (left: ELBO; right: reconstruction loss)
vs disentanglement (top: MIG; bottom: DCI) for 1,080 trained models, color-coded according
to supervision. Each point represents a trained model.
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A.2.5 Out-of-Distribution Transfer

Figure A.8. Transfer metric in OOD2-A (top) and OOD2-B (bottom) settings, decomposed
according to the factor of variation and presence of input noise. When noise is added to the
input during training, the inferred cube position error is relatively low (the scores are the
mean absolute error, and they are normalized to [0, 1]). This is particularly useful in the
OOD2-B setting (real world) where the joint state is anyway considered known, while object
position has to be inferred with tracking methods.
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A.2.6 Out-of-Distribution Reconstructions

Figure A.9. From top to bottom: reconstructions of real-world images (OOD2-B) for a
model with low (0.15), medium (0.5), and high (1.0) DCI score.
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Figure A.10. Reconstructions of simulated images with out-of-distribution encoder (OOD2-
A) for a model with low (0.15), medium (0.5), and high (1.0) DCI score.
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B.1 Implementation details

Task definitions and reward structure. We derive both tasks, object reaching
and pushing, from the CausalWorld environments introduced by Ahmed et al. (2021).
We pretrain representations on the dataset introduced by Dittadi et al. (2021b), and
allow only one finger to move in our RL experiments. We introduce the object reaching
environment that involves an unmovable cube. We used reward structures similar to
those in Ahmed et al. (2021):

• object reaching: rt = −750 [d(gt, et)− d(gt−1, et−1)]

• pushing: rt = −750 [d(ot, et)− d(ot−1, et−1)]− 250 [d(ot, gt)− d(ot−1, gt−1)] + ρt

where t denotes the time step, ρt ∈ [0, 1] is the fractional overlap with the goal cube at
time t, et ∈ R3 is the end-effector position, ot ∈ R3 the cube position, gt ∈ R3 the
goal position, and d(·, ·) denotes the Euclidean distance. The cube in object reaching is
fixed, i.e. ot = gt for all t. The time limit is 2 seconds in object reaching and 4 seconds
in pushing.

Success metrics. Besides the accumulated reward along episodes, that is determined
by the reward function, we also report two reward-independent normalized success
definitions for better interpretability: In object reaching, the success metric indicates
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progress from the initial end effector position to the optimal distance from the center
of the cube. It is 0 if the final distance is greater than or equal to the initial distance,
and 1 if the end effector is touching the center of a face of the cube. In pushing, the
success metric is defined as the volumetric overlap of the cube with the goal cube, and
the task can be visually considered solved with a score around 80%. We observed that
accumulated reward and success are very strongly correlated, thus allowing us to use
one or the other for measuring performance.

Training and evaluation details. During training, the goal position is randomly
sampled at every episode. Similarly, the object color is sampled from the 4 specified
training colors from D1 that correspond to the OOD1-B split from Dittadi et al.
(2021b).

For each policy evaluation (in-distribution and out-of-distribution variants), we average
the accumulated reward and final success over 200 episodes with randomly sampled
cube positions and the respective object color in both tasks.

SAC implementation. Our implementation of SAC builds on stable-baselines, a
Python package introduced by Hill et al. (2018). We use the same SAC hyperparameters
used for pushing in Ahmed et al. (2021). When using L1 regularization, we add to
the loss function the L1 norm of the first layers of all MLPs, scaled by a coefficient α.
We gradually increase regularization by linearly annealing α from 0 to 5 · 10−7 over
200,000 time steps in object reaching, and from 0 to 6 · 10−8 over 3,000,000 time steps
in pushing.

B.2 Additional results

B.2.1 Training environment

Fig. 6.2 in Section 6.4.1 shows correlations of unsupervised and supervised metrics
with in-distribution reward for object reaching and pushing, only in the case without
regularization. In Fig. B.1 we also show these results in the case with regularization,
as well as when adjusting for MLP informativeness.
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Figure B.1. Rank correlations between metrics and in-distribution reward, with and without
adjusting for informativeness. Correlations are color-coded as described in Fig. 6.2.

B.2.2 Out-of-distribution generalization in simulation

In Section 6.4.2 we discussed rank-correlations of OOD rewards with unsupervised,
informativeness and generalization scores on object reaching without regularization. In
Fig. B.2 we also show these results for the case with regularization and on pushing, as
well as when adjusting for MLP informativeness. Without regularization, we observe
on pushing very similar correlations along all metrics as we observed on object reaching,
confirming our conclusions on this more complex task. When using regularization, rank
correlations are very similar across both tasks. Interestingly, the correlation between
GS-OOD2 scores and OOD2 generalization of the policy is even stronger when using
L1 regularization. In contrast to our observations without regularization, we find that
the correlation between GS-OOD1 and OOD1 generalization of the policy vanishes
when adjusting for the MLP metric.

B.2.2.1 Disentangled representations

As discussed in Section 6.4.2 for object reaching without regularization, we observe in
Fig. B.2 a weak correlation between some disentanglement metrics and OOD1 reward,
which however vanishes when adjusting for MLP informativeness. In agreement with
Dittadi et al. (2021b), we observe no significant correlation between disentanglement
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Figure B.2. Rank correlations between metrics and OOD reward, with and without adjusting
for informativeness. Correlations are color-coded as described in Fig. 6.2.

and OOD2 generalization, for both tasks, with and without regularization. From
Fig. B.3 we see that in some cases, especially without regularization, a very high DCI
score seems to lead to better performance on average. However, this behavior is not
significant (within error bars), as opposed to the results shown in simpler downstream
tasks by Dittadi et al. (2021b). Furthermore, this trend is likely due to representation
informativeness, since the correlations with disentanglement disappear when adjusting
for the MLP score, as discussed above.

B.2.2.2 Regularization

As seen in Fig. B.3, regularization generally has a positive effect on OOD1 and OOD2
generalization, which is particularly prominent in the OOD1 setting. On the other
hand, it leads to lower training rewards both in object reaching and in pushing. In the
latter, the performance drop is particularly significant, while in object reaching it is
negligible.
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Figure B.3. Fractional success on object reaching (top) and pushing (bottom), split
according to low (blue), medium-high (orange), and almost perfect (green) disentanglement.
Results for object reaching are also reported in Fig. 6.5 in Section 6.4.2.

B.2.2.3 Sample efficiency

In addition to the analysis reported in the main paper, we investigate how representation
properties affect sample efficiency. Specifically, we store checkpoints of our policies at
t ∈ {20k, 50k, 100k, 400k} for object reaching and t ∈ {200k, 500k, 1M, 3M} for pushing.
We then evaluate policies at these time step on the same three environments as before:
(1) on the cube colors from training; (2) on the OOD1 cube colors; and (3) on the
OOD2-sim cube colors. Results are summarized in Fig. B.4 for object reaching and
Fig. B.5 for pushing.

On object reaching (Fig. B.4), we observe very similar trends with and without regu-
larization: Unsupervised metrics (ELBO and reconstruction loss) display a correlation
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Figure B.4. Sample efficiency analysis for object reaching. Rank correlations of rewards
with relevant metrics along multiple time steps. Correlations are color-coded as described in
Fig. 6.2.

Figure B.5. Sample efficiency analysis for pushing. Rank correlations of rewards with
relevant metrics along multiple time steps. Correlations are color-coded as described in
Fig. 6.2.

with the training reward, as do the supervised informativeness metrics (GBT and
MLP). This is strongest on early timesteps, meaning these scores could be important for
sample efficiency. Similarly, we observe a correlation with the disentanglement scores
DCI, MIG and SAP. With the help of the additional evaluation of rewards adjusted
for MLP informativeness, we can attribute this correlation again to this common
confounder. Crucially, we see that the generalization scores (GS) are correlated with
generalization of the corresponding policies under OOD1 and OOD2 shifts for all
recorded time steps, confirming the results in the main text.
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On pushing (Fig. B.5), many correlations at early checkpoints are significantly reduced,
especially with regularization. This behavior might be due to the more complicated
nature of the task, which involves learning to reach the cube first, and then push
it to the goal. Correlations are primarily seen towards the end of training, with
similar spurious correlations with disentanglement as elaborated above. Importantly,
correlations between generalization scores (GS) and policy generalization under the
same distribution shifts remain strong and statistically significant, corroborating the
analysis in the main text.

B.2.2.4 Generalization to a novel shape

As mentioned in Section 6.4.2, on the object reaching task, we also test generalization
w.r.t. a novel object shape by replacing the cube with an unmovable sphere. This
corresponds to a strong OOD2-type shift, since shape was never varied when training
the representations. We then evaluate a subset of 960 trained policies as before, with
the same color splits. Surprisingly, the policies appear to handle the novel shape as we
see from the histograms in Fig. B.6 in terms of success and final distance. In fact, when
the sphere has the same colors that the cube had during policy training, all policies
get closer than 5 cm to the sphere on average, with a mean success metric of about
95%. On sphere colors from the OOD1 split, more than 98.5% move the finger closer
than this threshold, and on the strongest distribution shift (OOD2-sim colors and cube
replaced by sphere) almost 70% surpass that threshold with an average success metric
above 80%.

B.2.3 Deploying policies to the real world

In Fig. B.7 we show three representative episodes of testing a reaching policy on the
real robot for the strong OOD shift with a novel sphere object shape instead of the
cube from training. We present the respective videos in the project page. There we
also present videos of additional real-world episodes on pushing and reaching cubes of
different colors.
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Figure B.6. Testing policies for object reaching under the same in-distribution, OOD1, and
OOD2 evaluation protocols regarding object color in simulation, but replacing the cube with
a sphere, which was never used in training.

Figure B.7. Transferring policies for object reaching to the real robot setup without any
fine-tuning on a green sphere (unseen shape and color). Correlations are color-coded as
described in Fig. 6.2.
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C.1 Models

In this section, we give an informal overview of the models included in this study and
provide details on the implementation and hyperparameter choices.

C.1.1 Overview of the models

MONet. In MONet (Burgess et al., 2019), attention masks are computed by a
recurrent segmentation network that takes as input the image and the current scope,
which is the still unexplained portion of the image. For each slot, a variational
autoencoder (the component VAE) encodes the full image and the current attention
mask, and then decodes the latent representation to an image reconstruction and mask.
The reconstructed images are combined using the attention masks (not the masks
decoded by the component VAE) into the final reconstructed image. The reconstruction
loss is the negative log-likelihood of a spatial Gaussian mixture model (GMM) with one
component per slot, where each pixel is modeled independently. The overall training
loss is a (weighted) sum of the reconstruction loss, the KL divergence of the component
VAEs, and an additional mask reconstruction loss for the component VAEs.

GENESIS. Similarly to MONet, GENESIS (Engelcke et al., 2020) models each
image as a spatial GMM. The spatial dependencies between components are modeled
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by an autoregressive prior distribution over the latent variables that encode the mixing
probabilities. From the image, an encoder and a recurrent network are used to compute
the latent variables that are then decoded into the mixing probabilities. The mixing
probabilities are pixel-wise and can be seen as attention masks for the image. Each
of these is concatenated with the original image and used as input to the component
VAE, which finds latent representations and reconstructs each scene component. These
are combined using the mixing probabilities to obtain the reconstruction of the image.
While in MONet the attention masks are computed by a deterministic segmentation
network, GENESIS defines an autoregressive prior on latent codes that are decoded
into attention masks. GENESIS is therefore a proper probabilistic generative model,
and it is trained by maximizing a modification of the ELBO introduced by Rezende and
Viola (2018), which adaptively trades off the likelihood and KL terms in the ELBO.

Slot Attention. As our focus is on the object discovery task, we use the autoencoder
model proposed in the Slot Attention paper (Locatello et al., 2020d). The encoder
consists of a CNN followed by the Slot Attention module, which maps the feature map
to a set of slots through an iterative refinement process. At each iteration, dot-product
attention is computed with the input vectors as keys and the current slot vectors
as queries. The attention weights are then normalized over the slots, introducing
competition between the slots to explain the input. Each slot is then updated using a
GRU that takes as inputs the current slot vectors and the normalized attention vectors.
After the refinement steps, the slot vectors are decoded into the appearance and mask
of each object, which are then combined to reconstruct the entire image. The model is
optimized by minimizing the MSE reconstruction loss. While MONet and GENESIS
use sequential slots to represent objects, Slot Attention employs instance slots.

SPACE. Spatially Parallel Attention and Component Extraction (SPACE) (Lin
et al., 2020b) combines the approaches of scene-mixture models and spatial attention
models. The foreground objects are segregated using bounding boxes computed
through a parallel spatial attention process. The parallelism allows for a larger number
of bounding boxes to be processed compared to previous related approaches. The
background elements are instead modeled by a mixture of components. The use of
bounding boxes for the foreground objects could lead to under- or over-segmentation
if the size of the bounding box is not tuned appropriately. An additional boundary
loss tries to address the over-segmentation issue by penalizing splitting objects across
bounding boxes.
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VAE baselines. We train variational autoencoders (VAEs) (Kingma and Welling,
2014; Rezende, Mohamed, and Wierstra, 2014) as baselines that learn distributed
representations. Following Greff et al. (2019), we use two different decoder architectures:
one consisting of an MLP followed by transposed convolutions, and one where the
MLP is replaced by a broadcast decoder (Watters et al., 2019). The VAEs are trained
by maximizing the usual variational lower bound (ELBO).

C.1.2 Implementation details

We implement our library in PyTorch (Paszke et al., 2019). All models are either
re-implemented or adapted from available code, and quantitative results from the
literature are reproduced, when available. As shown in Table C.1, all methods included
in our study were originally evaluated only on a subset of the datasets considered in
our study. Thus, the recommended hyperparameters for a given model are likely to be
suboptimal in the datasets on which such model was not evaluated. When a model
performed particularly bad on a dataset, we attempted to find better hyperparameter
values for the sake of the soundness of our study. We provide implementation and
training details for each model below.

MONet. We re-implement MONet following the implementation details in Burgess
et al. (2019). In order to make this model work satisfactorily on Shapestacks and
Tetrominoes—the two datasets where MONet was not originally tested—we ran a grid
search over hyperparameters on both datasets, as follows:

• Optimizer: Adam or RMSprop, both with default PyTorch parameters.

Table C.1. Datasets used for quantitative and/or qualitative evaluation in the publications
corresponding to the four object-centric models considered in this study. Here we train and
evaluate all models on all datasets.

CLEVR Multi-dSprites Objects Room Shapestacks Tetrominoes
MONet X X∗ X
Slot Attention X X X
GENESIS X∗ X X
SPACE
∗These publications use a variant of Multi-dSprites with colored background as opposed to grayscale.
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• β ∈ {0.1, 0.5}.

• Learning rate in {3e-5, 1e-4}.

• (σbg, σfg) ∈ {(0.06, 0.1), (0.12, 0.18), (0.2, 0.24), (0.25, 0.3), (0.3, 0.36)}.

A summary of the final hyperparameter choices is shown in Table C.2.

Slot Attention. We re-implement the Slot Attention autoencoder based on the
official TensorFlow implementation and the corresponding publication (Locatello et al.,
2020d). We mostly use the recommended hyperparameter values and learning rate
schedule. On Objects Room and Shapestacks, we use the same parameters as for
Multi-dSprites, which has the same resolution. On CLEVR, we make a few changes
to accommodate the larger image size. For the decoder, we follow the approach in
Locatello et al. (2020d) and use the broadcast decoder from a broadcasted shape of
8× 8 rather than 128× 128, and use four times a stride of 2 in the decoder. For the
encoder, we follow the set prediction architecture in Locatello et al. (2020d) and use
two strides of 2 in the encoder. Finally, we use a batch size of 32 rather than 64.

GENESIS. We re-implement GENESIS based on the official implementation and
the corresponding publication (Engelcke et al., 2020), and use the recommended
hyperparameter values. On Objects Room, we use the same hyperparameters as

Table C.2. Overview of the main hyperparameter values for MONet. When dataset-specific
values are not given, the defaults are used.

Hyperparameter Default value Dataset-specific values
CLEVR Shapestacks Tetrominoes

Optimizer Adam RMSprop RMSprop —
Learning rate 1e-4 3e-5 — —
Batch size 64 32 — —
Training steps 500k — — —
σbg 0.06 — 0.2 0.3
σfg 0.1 — 0.24 0.36
β 0.5 — 0.1 —
γ 0.5 — — —
Latent space size 16 — — —
U-Net blocks 5 6 — 4
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described in the paper for Multi-dSprites and Shapestacks, which have the same
resolution. On CLEVR, which has 128× 128 images, we use an additional stride of
2 in the convolutional layer at the middle of both encoder and decoder (the output
padding in the decoder is adjusted accordingly). In this case we also reduce the batch
size from 64 to 32. On Tetrominoes (32× 32 images), we change the first stride in the
encoder and the last stride in the decoder from 2 to 1.

SPACE. We adapt the official PyTorch implementation of SPACE to integrate it in
our library. While in Lin et al. (2020b) the authors train SPACE for 160k steps, here
we train it for 200k. Since SPACE was not tested on any of the five datasets considered
here (see Table C.1), we perform a hyperparameter sweep for all datasets. For each
dataset, we run a random search over hyperparameters by training 100 models for 100k
steps. Table C.3 shows the random search definition, the hyperparameter values used
for each dataset, and how they differ from those used in the original publication for the
3D-Rooms dataset (although we omit some hyperparameters that we leave unchanged).

VAEs. The architecture details for the VAEs are presented in Tables C.4 to C.6.
These are used for Shapestacks, Multi-dSprites, and Objects Room. For CLEVR, an
additional ResidualBlock with 64 channels and a AvgPool2D layer is added at the

Table C.3. Hyperparameters for SPACE experiments. Here we show: the hyperparameters
recommended by Lin et al. (2020b) for the 3D-Rooms dataset on the official code repository;
the hyperparameter space considered for our random search; the chosen default values across
datasets; the dataset-specific values for CLEVR and Tetrominoes, which override the defaults.
We omit some of the hyperparameters that we left unchanged from Lin et al. (2020b).

Hyperparameter Original
(3D-Rooms) Sweep values Default value Dataset-specific values

CLEVR Tetrominoes
FG optimizer RMSprop RMSprop RMSprop — —
FG learning rate 1e-5 {3e-6, 1e-5, 3e-5, 1e-4} 3e-5 1e-4 1e-4
BG optimizer Adam Adam Adam — —
BG learning rate 1e-3 1e-3 1e-3 — —
Batch size 12 {16, 32} 32 — —
σbg 0.15 {0.05, 0.15, 0.35} 0.15 0.05 —
σfg 0.15 {0.02, 0.05, 0.15, 0.35} 0.15 0.05 —
G (FG grid size) 8 {4, 8} 8 — 4
K (BG n. of slots) 5 {1, 5} 5 — —
Boundary loss off step 100k {20k, 100k} 20k — 100k
τ anneal end step 20k {20k, 50k} 50k 20k —
Mean of p(zpres)
(start/end values) (0.1, 0.01) {(0.1, 0.01), (0.5, 0.05)} (0.5, 0.05) (0.1, 0.01) (0.1, 0.01)

Mean of p(zscale)
(start/end values) (−1,−2) {(−1,−2), (0,−1)} (0,−1) — —
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end of the stack of ResidualBlocks, to downsample the image one more time. This is
mirrored in the decoder, where a ResidualBlock with 256 channels and a (bilinear)
Interpolation layer is added at the beginning of the stack of ResidualBlocks. The
same happens in the broadcast decoder case. For Tetrominoes, the number of layers
is the same, but the last AvgPool2D layer is removed from the encoder and the first
Interpolation layer is removed from the decoder, to have one less downsampling and
upsampling, respectively. The latent space size is chosen to be 64 times the number of
slots that would be used when training an object-centric model on the same dataset.
Note that the default number of slots varies depending on the dataset, as shown in
Table C.7.1

1Here we consider the default for MONet, Slot Attention, and GENESIS, and we disregard SPACE.
Although SPACE has a much larger number of slots, this is not comparable with the other models
because of the grid-based spatial attention mechanism.
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Table C.4. Structure of the encoder for both the vanilla and broadcast VAE, excluding the
final linear layer that parameterizes µ and log σ2 of the approximate posterior.

Encoder
Type Size/Ch. Notes
Input: x 3
Conv 5× 5 Stride 2, Padding 2
LeakyReLU

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers
Conv 1× 1 128
AvgPool2D Kernel size 2, Stride 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
AvgPool2D Kernel size 2, Stride 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1× 1 256

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers

Flatten
LeakyReLU
Linear 512
LeakyReLU
LayerNorm
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Table C.5. Structure of the decoder for the vanilla VAE.

Vanilla Decoder
Type Size/Ch. Notes
Input: z 64× num. slots
LeakyReLU
Linear 512
LeakyReLU
Unflatten

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers
Conv 1× 1 128
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1× 1 64
Interpolation Scale 2

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers
Interpolation Scale 2

LeakyReLU
Conv 5× 5 Image channels Stride 1, Padding 2
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Table C.6. Structure of the decoder for the broadcast VAE. One less Interpolation is required,
because the final image size for this architecture is 64 and the broadcasting is to a feature
map of size 8.

Broadcast Decoder
Type Size/Ch. Notes
Input: z 64× num. slots
Broadcast 64× num. slots +2 Broadcast dim. 8

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers
Conv 1× 1 128

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1× 1 64
Interpolation Scale 2

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers

LeakyReLU
Conv 5× 5 Image channels Stride 1, Padding 2
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C.2 Datasets

We collected 5 existing multi-object datasets and converted them into a common format.
Multi-dSprites, Objects Room and Tetrominoes are from DeepMind’s Multi-Object
Datasets collection, under the Apache 2.0 license (Kabra et al., 2019). CLEVR was
originally proposed by Johnson et al. (2017), with segmentation masks introduced by
Kabra et al. (2019). Shapestacks was proposed by Groth et al. (2018) under the GPL
3.0 license. Details on these datasets are provided in the following subsections. See
Fig. C.1 for sample images and ground-truth segmentation masks for these datasets.
In Table C.7, we report dataset splits, number of foreground and background objects,
and number of slots used when training object-centric models.

C.2.1 CLEVR

This dataset consists of 128× 128 images of 3D scenes with up to 10 objects, possibly
occluding each other. Objects can have different colors (8 in total), materials (rubber
or metal), shapes (sphere, cylinder, cube), sizes (small or large), x and y positions, and
rotations. Objects can be occluded by others. On average, 6.2 objects are visible. As
in previous work (Greff et al., 2019; Locatello et al., 2020d), we learn object-centric
representations on the CLEVR6 variant, which contains at most 6 objects. There
are 100 000 samples in the full dataset, and 53 483 in the CLEVR6 variant (at most 6
objects). The CLEVR dataset has been cropped and resized according to the procedure
detailed originally by Burgess et al. (2019).

Each object is annotated with the following properties:

• color (categorical): 8 colors:
– Red. RGB:[173, 35, 35]

– Cyan. RGB:[41, 208, 208]

– Green. RGB:[29, 105, 20]

– Blue. RGB:[42, 75, 215]

– Brown. RGB:[129, 74, 25]

– Gray. RGB:[87, 87, 87]

– Purple. RGB:[129, 38, 192]
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– Yellow. RGB:[255, 238, 51]

• material (categorical): The material of the object: rubber or metal.
• shape (categorical): The shape of the object: sphere, cylinder or cube.
• size (categorical): The size of the object: small or large.
• x (numerical): The x coordinate in 3D space.
• y (numerical): The y coordinate in 3D space.

C.2.2 Multi-dSprites

This dataset is based on the dSprites dataset (Matthey et al., 2017). Following previous
work (Greff et al., 2019; Locatello et al., 2020d), we use the Multi-dSprites variant with
colored sprites on a grayscale background. Each scene has 2–5 objects with random
shapes (ellipse, square, heart), sizes (6 discrete values in [0.5, 1]), x and y position,
orientation, and color (randomly sampled in HSV space). Objects can occlude each
other. The intensity of the uniform grayscale background is randomly sampled in each
image. Images have size 64× 64.

Each object is annotated with the following properties:

• color (numerical): 3-dimensional RGB color vector.
• scale (numerical): Scaling of the object, 6 uniformly spaced values between 0.5

and 1.
• shape (categorical): The shape type of the object (ellipse, heart, square).
• x (numerical): Horizontal position between 0 and 1.
• y (numerical): Vertical position between 0 and 1.

C.2.3 Objects Room

This dataset was originally introduced by Eslami et al. (2018) and consists of 64× 64
images of 3D scenes with up to three objects. Since this dataset includes masks
but no labels for the object properties, we can use it only to evaluate segmentation
performance.
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Figure C.1. Examples of images from the datasets considered in this work. The leftmost
column represents the original image, the other columns show all the objects in the scene
according to the ground-truth segmentation masks. Top to bottom: CLEVR6, Multi-dSprites,
Objects Room, Shapestacks, Tetrominoes.
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Table C.7. Dataset splits, number of foreground and background objects, and number of
slots used when training object-centric models.

Dataset Name Train Validation Test Background Foreground Slots
Size Size Size Objects Objects

CLEVR6 49483 2000 2000 1 3–6 7∗
Multi-dSprites 90000 5000 5000 1 2–5 6∗
Objects Room 90000 5000 5000 4 1–3 7∗
Shapestacks 90000 5000 5000 1 2–6 7∗
Tetrominoes 90000 5000 5000 1 3 4†
∗In SPACE we use 69 slots: 5 background slots, and a grid of 8× 8 foreground slots.
†In SPACE we use 21 slots: 5 background slots, and a grid of 4× 4 foreground slots.

C.2.4 Shapestacks

This dataset consists of 64× 64 images of 3D scenes where objects are stacked to form
a tower. Each scene is available under different camera views. Object properties are
shape (cube, cylinder, sphere), color (6 possible values), size (numerical) and ordinal
position in the stack.

Each object is annotated with the following properties:

• shape (categorical): shape of the object: cylinder, sphere or cuboid.
• color (categorical): 6 colors:

– Blue. RGB:[0, 0, 255]

– Green. RGB:[0, 255, 0]

– Cyan. RGB:[0, 255, 255]

– Red. RGB:[255, 0, 0]

– Purple. RGB:[255, 0, 255]

– Yellow. RGB:[255, 255, 0]

C.2.5 Tetrominoes

This dataset consists of 32×32 images (cropped from the original 35×35 for simplicity)
of 3D-textured tetris pieces placed on a black background. There are always 3 objects
in a scene, and no occlusions. Objects have different shapes (19 in total), colors (6



156 Appendix C Supplementary material for Chapter 7

fully saturated colors), x and y position.

Each object is annotated with the following properties:

• shape (categorical): 19 shapes:
– Horizontal I piece.
– Vertical I piece.
– L piece pointing downward.
– J piece pointing upward.
– L piece pointing upward.
– J piece pointing downward.
– L piece pointing left.
– J piece pointing left.
– J piece pointing right.
– L piece pointing right.
– Horizontal Z piece.
– Horizontal S piece.
– Vertical Z piece.
– Vertical S piece.
– T piece pointing upward.
– T piece pointing downward.
– T piece pointing left.
– T piece pointing right.
– O piece.

• color (categorical): 6 colors:
– Blue. RGB:[0, 0, 255]

– Green. RGB:[0, 255, 0]

– Cyan. RGB:[0, 255, 255]

– Red. RGB:[255, 0, 0]

– Purple. RGB:[255, 0, 255]

– Yellow. RGB:[255, 255, 0]

• x (numerical): Horizontal position.
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• y (numerical): Vertical position.

C.3 Evaluations

In this section, we discuss in more detail the chosen reconstruction and segmentation
metrics (Appendix C.3.1), provide implementation details on the downstream property
prediction task (Appendix C.3.2), and more closely examine the distribution shifts
considered in this study (Appendix C.3.3).

C.3.1 Reconstruction and segmentation metrics

Mean reconstruction error. Since all models in this study are autoencoders, we
can use the reconstruction error to This is potentially an informative metric as it should
roughly indicate the amount and accuracy of information captured by the models and
present in the representations. All models include some form of reconstruction term
in their losses, but they may take different forms. We then choose to evaluate the
reconstruction error with the mean squared error (MSE), defined for an image x and
its reconstruction x̂ as follows:

MSE (x, x̂) = ‖x− x̂‖2
2 = 1

D

D∑
i=1

(xi − x̂i)2 (C.1)

where for simplicity we assume a vector representation of x and x̂, both with dimension
D equal to the number of pixels times the number of color channels.

Adjusted Rand Index (ARI). The Adjusted Rand Index (ARI) (Hubert and
Arabi, 1985) measures the similarity between two partitions of a set (or clusterings).
Interpreting segmentation as clustering of pixels, the ARI can be used to measure the
degree of similarity between two sets of segmentation masks. Segmentation accuracy is
then assessed by comparing ground-truth and predicted masks. The expected value of
the ARI on random clustering is 0, and the maximum value is 1 (identical clusterings
up to label permutation). As in prior work (Burgess et al., 2019; Engelcke et al., 2020;
Locatello et al., 2020d), we only consider the ground-truth masks of foreground objects
when computing the ARI. Below, we define the Rand Index and the Adjusted Rand
Index in more detail.
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The Rand Index is a symmetric measure of the similarity between two partitions of a
set (Hubert and Arabi, 1985; Rand, 1971; Wagner and Wagner, 2007). It is inspired by
traditional classification metrics that compare the number of correctly and incorrectly
classified elements. The Rand Index is defined as follows: Let S be a set of n elements,
and let A = {A1, . . . , AnA} and B = {B1, . . . , BnB} be partitions of S. Furthermore,
let us introduce the following quantities:

• m11: number of pairs of elements that are in the same subset in both A and B,

• m00: number of pairs of elements that are in different subsets in both A and B,

• m10: number of pairs of elements that are in the same subset in A and in different
subsets in B,

• m01: number of pairs of elements that are in different subsets in A and in the
same subset in B.

The Rand Index is then given by:

RI(A,B) =
m11 +m00

m11 +m00 +m10 +m01
=

2(m11 +m00)
n(n− 1) (C.2)

and quantifies the number of elements that have been correctly classified over the total
number of elements.

The Rand Index ranges from 0 (no pair classified in the same way under A and B)
to 1 (A and B are identical up to a permutation). However, the result is strongly
dependent on the number of clusters and on the number of elements in each cluster.
If we fix nA, nB , and the proportion of elements in each subset of the two partitions,
then the Rand Index will increase as n increases, and even converge to 1 in some cases
(Fowlkes and Mallows, 1983). The expected value of a random clustering also depends
on the number of clusters and on the number of elements n.

The Adjusted Rand Index (ARI) (Hubert and Arabi, 1985) addresses this issue by
normalizing the Rand Index such that, with a random clustering, the metric will be
0 in expectation. Given the same conditions as above, let ni,j = |Ai ∩Bj |, ai = |Ai|,
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and bi = |Bi|, with i = 1, . . . , nA and i = 1, . . . , nB . The ARI is then defined as:

ARI(A,B) =

∑
i,j

(
ni,j

2
)
−
∑
i

(
ai
2
)∑

j

(
bj
2
)(

n
2
)

1
2

[∑
i

(
ai
2
)

+
∑
j

(
bj
2
)]
−
∑
i

(
ai
2
)∑

j

(
bj
2
)(

n
2
) (C.3)

which is 0 in expectation for random clusterings, and 1 for perfectly matching partitions
(up to a permutation). Note that the ARI can be negative.

Segmentation covering metrics. Segmentation Covering (SC) (Arbelaez et al.,
2010) uses the intersection over union (IOU) between pairs of segmentation masks
from the sets A and B. How the segmentation masks are matched depends on whether
we are considering the covering of B by A (denoted by A→ B) or vice versa (B → A).
We use the slightly modified definition by Engelcke et al. (2020):

SC(A→ B) = 1∑
RB∈B |RB |

∑
RB∈B

|RB | max
RA∈A

iou(RA, RB) , (C.4)

where |R| denotes the number of pixels belonging to mask R, and the intersection over
union is defined as:

iou(RA, RB) = |RA ∩RB |
|RA ∪RB |

. (C.5)

While standard (weighted) segmentation covering weights the IOU by the size of the
ground truth mask, mean (or unweighted) segmentation covering (mSC) (Engelcke
et al., 2020) gives the same importance to masks of different size:

mSC(A→ B) = 1
|B|

∑
RB∈B

max
RA∈A

iou(RA, RB) , (C.6)

where |B| denotes the number of non-empty masks in B. Since a high SC score can
still be attained when small objects are not segmented correctly, mSC is considered
to be a more meaningful and robust metric across different datasets (Engelcke et al.,
2020).

Note that neither SC nor mSC are symmetric: Following Engelcke et al. (2020), we
consider A to be the predicted segmentation masks and B the ground-truth masks
of the foreground objects. As observed by Engelcke et al. (2020), both SC and mSC
penalize over-segmentation (segmenting one object into separate slots), unlike the ARI.
Both SC and mSC take values in [0, 1].
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C.3.2 Downstream property prediction

Here we start by briefly summarizing the downstream property prediction task presented
in the main text, and then provide additional details on the models and evaluation
protocol.

Overview of the property prediction task. As outlined in Section 7.3, we
evaluate scene representations by training downstream models to predict ground-truth
object properties from the representations. Exploiting the fact that object slots share a
common representational format, a single downstream model f can be used to predict
the properties of each object independently: for each slot representation zk we predict
a vector of object properties ŷk = f(zk). This vector represents predictions for all
properties of an object. We then match each slot’s prediction to a corresponding
ground-truth object using mask matching or loss matching (see main text). In non-
slotted models such as the VAE baselines considered in this study, we do not have
access to separate object representations {zk}Kk=1. Therefore, the downstream model
f in this case takes as input the overall distributed representation z, which is a flat
vector, and outputs a prediction of all objects at once: ŷ = f(z). This is then split
into K vectors, which are matched to ground-truth objects with either loss matching
or deterministic matching (see main text).

Implementation details. We use 4 different downstream models: a linear model,
and MLPs with up to 3 hidden layers of size 256 each. Let P be the size of the
ground-truth property vector, which includes all numerical and categorical2 properties
according to an order specified by the dataset. We denote by K be the number of slots
and d the dimensionality of a slot representation zk in object-centric models. Note
that we must include in zk all representations related to a slot, possibly including
different latent variables that are explicitly responsible for modeling, e.g., the location,
appearance, or presence of an object. The downstream model f has input size d and
output size P , and is applied in parallel (with shared weights) to all slots. In non-slotted
models, we always define the dimensionality of the distributed representation z in
terms of K for fair comparison with slot-based models, hence we can write the latent
dimensionality of such models as d ·K. In this case, the input and output sizes of the
downstream model (d and P , respectively) are multiplied by K, and we apply this
model only once, to the entire scene representation. The linear downstream model

2Here we use the one-hot representation of categorical properties.
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is implemented as a linear layer. MLP models (with at least one hidden layer) have
hidden size 256 and LeakyReLU nonlinearities, as shown in Table C.8.

Data splits. Let Ds be a source dataset and Dt a target dataset. When doing in-
distribution evaluation, we train and test the downstream model without distribution
shifts, so we simply have Ds = Dt. Given a representation function r, and a matching
strategy to match the slots with ground-truth objects, we consider:

• a train split of 10 000 images from Ds ,

• a validation split of 1000 images from Ds ,

• a test split of 2000 images from Dt .

The test split only contains images that were not used when training the upstream
unsupervised models.

Training. We then train the downstream model to predict ŷ from z = r(x) using
the Adam optimizer with an initial learning rate of 1e-3 and a batch size of 64, for a
maximum of 6000 steps. The learning rate is halved every 2000 steps. We perform
early stopping as follows: We use the validation set to compute the (in-distribution)
validation loss every 250 training steps—if the loss does not decrease by more than 0.01
for 3 evaluations (750 steps), training is interrupted. In this stage, the representation
for each image is fixed, i.e. the representation function r is never updated. The loss
is computed independently for each object property, and is a sum of MSE and cross-
entropy terms, depending on whether an object property is numerical or categorical.

Table C.8. Architecture of the downstream MLP models for property prediction. The third
and fourth items are repeated 0 or more times, depending on the required number of hidden
layers.

Layer type Input size Output size
Linear d or d ·K 256
LeakyReLU(0.01) 256 256
Linear 256 256

}
repeated 0 or
more timesLeakyReLU(0.01) 256 256

Linear 256 P or P ·K
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Downstream training and evaluation under distribution shifts. As mentioned
earlier, when doing in-distribution evaluation we simply have Ds = Dt. In the general
case, we may for example train on the original Multi-dSprites dataset, and test on the
Multi-dSprites variant that has an unseen shape or an occlusion. In the special case in
which we allow retraining of the downstream model (see Sections 7.4.3 and 7.4.4), we
still have Ds = Dt, but they are both OOD with respect to the original “clean” dataset
used for training the unsupervised models.

Under distribution shifts, the representations r(x) might be inaccurate, which might
bias our downstream results. Although there is no perfect solution to this issue, we
attempt to reduce as much as possible the potential effect of distribution shifts on
the training and evaluation of downstream models. When distribution shifts affect
global scene properties, there is no alternative but to train and evaluate the models as
usual. When distribution shifts affect single objects, however, we can assume that the
representations of the ID objects are not as severely affected by the shift, and only use
these for training downstream models.

Here we consider the case where the test dataset Dt has an object-level distribution
shift, and the training dataset Ds is either the original “clean” dataset or the same as
Dt. At train time, we ignore OOD objects (if any) both when matching slots with
objects and when training downstream property prediction models. Note that, when
the training dataset Ds is the original “clean” dataset, the downstream models are
always trained as usual because there are no OOD objects. At test time, there are a
few cases depending on the matching strategy:

• When using mask matching, we consider all objects for matching, and evaluate
the downstream models on all objects. We then report test results on ID and
OOD objects separately.

• When using loss matching, we cannot match all ground-truth objects, since
the OOD objects might have OOD categorical properties (in our setup, the
downstream models cannot predict classes that were not seen during training).
Therefore, we resort to a two-step matching approach: we first match slots to all
objects using the prediction loss computed only on the properties that are ID
for all objects. We then keep only the matches for OOD objects, and repeat the
usual loss matching with the remaining slots and objects, using all properties.
The OOD objects are thus matched in a relatively fair way, while the matching
of the ID objects can be refined at a later step using all available properties.
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• When using deterministic matching, we cannot exactly follow the two-step
matching strategy presented above. Instead, we modify the lexicographic order
to give a higher weight to OOD features of OOD objects, so the corresponding
objects are pushed down in the order while maintaining the order given by more
significant (according to the order) properties. Note that the downstream model
in this case might be at a disadvantage if it is trained on a dataset with object-
level distribution shifts: the model is now trained to predict only ID objects, so
at test time there will be one more target object on average.

C.3.3 Distribution shifts for OOD evaluation

Here we present more in detail the distribution shifts we apply to images in order to
test OOD generalization in different scenarios. Examples are shown in Fig. C.2.

Occlusion. A gray square is placed on top of the scene. The position is determined
by picking 5 locations uniformly at random (such that the entire square is in the image)

Figure C.2. Distribution shifts applied to the different datasets to test generalization.
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and selecting the one that occludes less (in terms of total area) of the foreground
objects. The size of the occlusion is (b0.4 ·Hc, b0.4 ·W c) with H and W the height and
width of the image, respectively. Occluded objects have their mask updated to reflect
the occlusion. The occlusion is categorized as background (or first background object
in case there are multiple background objects such as in Objects Room). The RGB
color of the square is [0.2, 0.2, 0.2] for CLEVR and [0.5, 0.5, 0.5] for all other datasets.

Object color. An object is selected uniformly at random and its color is changed by
randomly adjusting its brightness, contrast, saturation, and hue, using torchvision’s
ColorJitter transform with arguments [0.5, 0.5, 0.5, 0.5] for the four above-mentioned
parameters. This transformation is not performed on Multi-dSprites, since the object
colors in this dataset cover the entire RGB color space. The color and material
properties (when relevant) are not used in downstream tasks.

Crop. The image and mask are cropped at the center and resized to match their
original size. The crop size is (b 2

3Hc, b
2
3W c) with H and W the original height and

width of the image, respectively. When resizing, we use bilinear interpolation for the
image and nearest neighbor for the mask.

Object style. We implement style transfer based on Gatys, Ecker, and Bethge (2016)
and on the PyTorch tutorial by Jacq and Herring (2021). The first 100k samples in
all datasets are converted using as style image The Great Wave off Kanagawa from
Hokusai’s series Thirty-six Views of Mount Fuji. The style is applied only to one
foreground object using the object masks. The color and material properties (when
relevant) are not used in downstream tasks.

Object shape. For the Multi-dSprites dataset, a triangle is placed on the scene with
properties sampled according to the same distributions defined by the Multi-dSprites
dataset. This is performed only on the images where at most 4 objects are present,
to mimic changing the shape of an existing object. The depth of the triangle in the
object stack is selected uniformly at random as an integer in [1, 5]. All objects from
the selected depth and upwards are moved up by one level to place the new shape
underneath them. The objects masks are adjusted accordingly for both the added
shape and the objects below it.
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C.4 Additional results

In this section, we report additional quantitative results and show qualitative perfor-
mance on all datasets for a selection of object-centric models and VAE baselines.

C.4.1 Performance in the training distribution

Fig. C.3 shows the distributions of the reconstruction MSE and all the segmentation
metrics, broken down by dataset and model. The relationship between these metrics
is also shown in scatter plots in Fig. C.4. As discussed in Section 7.4.1, we observe
that segmentation covering metrics are correlated with the ARI only in some cases,
and the models are ranked very differently depending on the chosen segmentation
metric. In particular, we observe here that Slot Attention achieves a high ARI score
and significantly lower (m)SC scores on CLEVR, Multi-dSprites, and Tetrominoes.
This is because Slot Attention on these datasets tends to model the background across
many slots (see Appendix C.4.3), which is penalized by the denominator of the IOU in
the (m)SC scores (see (C.4) to (C.6) in Appendix C.3.1). This behavior should not
have a major effect on downstream performance, which is confirmed by the strong and
consistent correlation between ARI and downstream performance (see also Section 7.4.2
and Fig. C.7).

Fig. C.5 shows an overview of downstream factor prediction performance on all labeled
datasets (one per column), using as downstream predictors a linear model or an MLP
with up to 3 hidden layers (one model per row). The MLP1 results are also shown
in Section 7.4.2 (Fig. 7.4). We report results separately for each object-centric model
and for each ground-truth object property. The metrics used here are accuracy for
categorical attributes and R2 for numerical attributes. We generally observe consistent
trends across downstream models. In Fig. C.6, we show the same results in a different
way, to directly compare downstream models (here the median baselines for slot-based
and distributed representations are shown as horizontal lines on top of the relevant
bars). Using larger downstream models tends to slightly improve test performance but,
interestingly, in many cases the effect is negligible. There are however a few cases in
which using a larger model significantly boosts test performance in object property
prediction. In some cases it seems sufficient to use a small MLP with one hidden layer
instead of a linear model (e.g., color prediction in CLEVR with Slot Attention, shape
prediction in CLEVR with MONet and Slot Attention, color prediction in Tetrominoes
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with MONet, GENESIS, and SPACE, or location prediction in Multi-dSprites with
SPACE), while in other cases we get further gains by using even larger models (e.g.,
shape prediction in Multi-dSprites with SPACE, and shape prediction in Tetrominoes
with all models except Slot Attention which already achieves a perfect score with a linear
model). Results for VAEs are generally less interpretable because the performance is
often too close to the naive baseline. However, in some cases using deeper downstream
models has clear benefits: e.g., shape prediction in Tetrominoes and color prediction in
Shapestacks improve from baseline level when using a linear model to a relatively high
accuracy when using one or two hidden layers. In other cases, a linear model already
works relatively well even from distributed representations—although significantly
worse than object-centric representations—and using deeper downstream models is
not beneficial (e.g., color and size prediction in CLEVR). Finally, in many other
cases, larger downstream models do not seem to be sufficient to improve performance
from VAE representations, confirming that often the relevant information may not be
easily accessible and suggesting that object-centric representations may be generally
beneficial.

In Fig. C.7 we show the Spearman rank correlations between evaluation metrics and
downstream performance with all considered combinations of slot matching (loss- and
mask-based) and downstream model (linear, MLP with 1, 2, or 3 hidden layers). The
trends are broadly consistent in all combinations, except that correlations with ARI
tend to be stronger (perhaps unsurprisingly) when using mask matching, and when
using larger downstream models.
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Figure C.3. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) in distribution (test set of 2000 images). The bars show medians and 95% confidence
intervals with 10 random seeds.
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Figure C.5. Overview of downstream performance in the training distribution (test set of
2000 images) for object-centric models and VAEs, with respective baselines. The metrics on
the y-axes are accuracy (↑) for categorical properties and R2 (↑) for numerical features. Each
row show results for a different downstream prediction model. From top to bottom: linear,
MLP with 1, 2, and 3 hidden layers (see annotation on the right). We use loss matching (see
Section 7.3) for all models. The bars show medians and 95% confidence intervals with 10
random seeds.
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Figure C.6. Comparing property prediction performance of different downstream models
(linear, MLP with 1 to 3 hidden layers), using loss matching (see Section 7.3). Results on
a test set of 2000 images in the training distribution of the upstream unsupervised models.
Each plot shows the test performance on one feature of a dataset. We show results for all
object-centric models and VAEs, and indicate the baseline (see Section 7.3) with a horizontal
line (not visible when the baseline is 0). The metrics on the y-axes are accuracy (↑) for
categorical properties and R2 (↑) for numerical features. The bars show medians and 95%
confidence intervals with 10 random seeds.
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Figure C.7. Spearman rank correlations between evaluation metrics and downstream
performance with all considered combinations of slot matching (loss- and mask-based) and
downstream model (linear, MLP with 1, 2, or 3 hidden layers). The correlations are color-
coded only when p<0.05.
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C.4.2 Performance under distribution shifts

C.4.2.1 Segmentation and reconstruction

In Fig. C.8, we report the distributions of the reconstruction MSE and segmentation
metrics in scenarios where one object is OOD. Results are split by dataset, model,
and type of distribution shift. As discussed in Section 7.4.3, the SC and mSC scores
show a compatible but less pronounced trend, while the MSE more closely mirrors
ARI. Notably, in many cases when we alter object style or color, the reconstruction
MSE increases significantly while the ARI is only mildly affected. This suggests that
the models are still capable of separating the objects but, unsurprisingly, they fail at
reconstructing them properly as they have features that were never encountered during
training.

Fig. C.9 shows analogous results when the distribution shift affects global scene
properties. Here we observe that segmentation performance is relatively robust to
occlusion although the MSE increases significantly (as expected, the occlusion cannot
be reconstructed properly). Segmentation metrics are also robust to increasing the
number of objects in CLEVR—here the MSE also increases, but to a lesser extent,
especially for SPACE.
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Figure C.8. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) on OOD dataset variants where one object undergoes distribution shift (test set of
2000 images). The bars show medians and 95% confidence intervals with 10 random seeds.
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Figure C.9. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) on OOD dataset variants where global properties of the scene are altered (test set
of 2000 images). The bars show medians and 95% confidence intervals with 10 random seeds.
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C.4.2.2 Downstream performance

In Figs. C.10 to C.25, we show the relationship between ID and OOD downstream
prediction performance for the same model, dataset, downstream predictor, and object
property. Assume a pretrained unsupervised object discovery model is given, and
a downstream model is trained from said model’s representations to predict object
properties. These plots answer the following question: given that the downstream
model predicts a particular object property (e.g., size in CLEVR) with a certain
accuracy (on average over all objects in all test images), how well is it going to predict
the same property when the scene undergoes one of the possible distribution shifts
considered in this study? And in case the distribution shift only affects one object,
how well is it going to predict that property in the ID objects as opposed to the OOD
objects? These 16 figures show all combinations of the following 4 factors (hierarchically
in this order): object-centric/distributed representations; loss/mask matching for
object-centric representations or loss/deterministic for distributed representations;
without/with retraining of the downstream model after the distribution shift has
occurred; single-object/global distribution shifts. In each figure, we show results for
each of the 4 downstream models considered in this study (linear, and MLP with up to
3 hidden layers). For each of these, we show splits in terms of ID/OOD objects (when
applicable), dataset, upstream model, type of distribution shift.
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Figure C.10. Generalization of object-centric representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.11. Generalization of object-centric representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift. Here
the distribution shift affects one object. On the x-axis: prediction performance (accuracy
or R2) for one object property on one dataset, averaged over all objects, on the original
training set of the unsupervised object discovery model. On the y-axis: the same metric in
OOD scenarios. Each data point corresponds to one representation model (e.g., MONet), one
dataset, one object property, one type of distribution shift, and either ID or OOD objects.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts and to ID/OOD objects. In the top row, we
separately report (color-coded) the performance over ID and OOD objects. In the following
rows, we only show OOD objects and split according to dataset, model, or type of distribution
shift. Each column shows analogous results for each of the 4 considered downstream models
for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.12. Generalization of object-centric representations in downstream prediction,
using mask matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.13. Generalization of object-centric representations in downstream prediction,
using mask matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.14. Generalization of object-centric representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged over
all objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.15. Generalization of object-centric representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects global properties of the scene. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all
objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.16. Generalization of object-centric representations in downstream prediction,
using mask matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged over
all objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.17. Generalization of object-centric representations in downstream prediction,
using mask matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects global properties of the scene. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all
objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.18. Generalization of distributed representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.19. Generalization of distributed representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift. Here
the distribution shift affects one object. On the x-axis: prediction performance (accuracy
or R2) for one object property on one dataset, averaged over all objects, on the original
training set of the unsupervised object discovery model. On the y-axis: the same metric in
OOD scenarios. Each data point corresponds to one representation model (e.g., MONet), one
dataset, one object property, one type of distribution shift, and either ID or OOD objects.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts and to ID/OOD objects. In the top row, we
separately report (color-coded) the performance over ID and OOD objects. In the following
rows, we only show OOD objects and split according to dataset, model, or type of distribution
shift. Each column shows analogous results for each of the 4 considered downstream models
for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.20. Generalization of distributed representations in downstream prediction,
using deterministic matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects one object. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all objects,
on the original training set of the unsupervised object discovery model. On the y-axis: the
same metric in OOD scenarios. Each data point corresponds to one representation model
(e.g., MONet), one dataset, one object property, one type of distribution shift, and either ID
or OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.21. Generalization of distributed representations in downstream prediction,
using deterministic matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.22. Generalization of distributed representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged over
all objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.23. Generalization of distributed representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects global properties of the scene. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all
objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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Figure C.24. Generalization of distributed representations in downstream prediction,
using deterministic matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects global properties of the scene. On
the x-axis: prediction performance (accuracy or R2) for one object property on one dataset,
averaged over all objects, on the original training set of the unsupervised object discovery
model. On the y-axis: the same metric in OOD scenarios. Each data point corresponds to
one representation model (e.g., MONet), one dataset, one object property, and one type of
distribution shift. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts. In each row, we color-code the
data according to dataset, model, or type of distribution shift. Each column shows analogous
results for each of the 4 considered downstream models for property prediction (linear, and
MLPs with up to 3 hidden layers).
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Figure C.25. Generalization of distributed representations in downstream prediction,
using deterministic matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged over
all objects, on the original training set of the unsupervised object discovery model. On the
y-axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up to
3 hidden layers).
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C.4.3 Qualitative results

In Figs. C.26 to C.30 we show the reconstruction and segmentation performance of
a selection of object-centric models on a random subset of held-out test images, for
all 5 datasets. We select one object-centric model per type (MONet, Slot Attention,
GENESIS, and SPACE) based on the ARI score on the validation set. The images we
show were not used for model selection. For each model we show the following:

• Input and reconstructed images.

• Ground-truth and inferred segmentation maps. Here we use a set of 8 colors and
assign each object (or slot) to a color. If there are more than 8 slots, we loop
over the 8 colors again (this does not happen here, except in SPACE, where it is
not an issue in practice). Rather than taking hard masks, we treat the masks as
“soft”, such that a pixel’s color is a weighted mean of the 8 colors according to the
masks. This is evident in Slot Attention, which typically splits the background
smoothly across slots (consistently with the qualitative results shown in Locatello
et al. (2020d)). For clarity, we match (with the Hungarian algorithm) the colors
of the ground-truth and predicted masks using the cosine distance (1 minus the
cosine similarity) between masks.

• Slot-wise reconstructions. Each column corresponds to a slot in the object-centric
representation of the model. Here we show the entire slot reconstruction with the
inferred slot mask as alpha (transparency) channel. The overall reconstruction
is the sum of these images. Since SPACE has in total up to 69 slots in our
experiments (K = 5 background slots, and a grid of foreground slots of size
G×G with G = 8), it is impractical to show all slots here. We choose instead to
show the 10 most salient slots, selected according to the average mask value over
the image. This number is sufficient as most slots are unused. When selecting
slots this way, the selected slots are shown in their original order (in SPACE, the
background slots are appended to the foreground slots).

For completeness, in Fig. C.31 we show inputs and reconstructions for one VAE baseline
per type (convolutional and broadcast decoder), selected using the reconstruction MSE
on the validation set.

Finally, Figs. C.32 to C.36 show input–reconstruction pairs for each dataset, model
type, and distribution shift. Note that the comparison is not necessarily fair, since
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object-centric models were chosen using the validation ARI on the training distribution,
while VAEs were chosen in a similar way but using the MSE. However, these qualitative
results can still be highly informative. We report some examples:

• Most object-centric models are relatively robust to shifts affecting a single object,
as discussed in the main text based on quantitative results.

• On the other hand, they are often not robust to global shifts, especially when
cropping and enlarging the scene.

• MONet achieves relatively good reconstructions even out of distribution, probably
because images are segmented mostly based on color. This was suggested by
Papa, Winther, and Dittadi (2022), where the models are trained on objects
with style transfer. However, we conjecture the behavior may be the same in
our case, and that the argument should also apply to other distribution shifts,
as seen by the relatively accurate reconstructions under both single-object and
global distribution shifts. Note that, while reconstructions are potentially more
accurate than for other models, this does not mean that MONet has segmented
the object correctly.

• Although its ARI score does not decrease significantly, Slot Attention may not
always handle more objects than in the training distribution, even when the
number of slots in the model is increased. This is consistent with the results
reported by Locatello et al. (2020d), and increasing the number of Slot Attention
iterations at test time seems to be a promising approach (Locatello et al., 2020d,
Fig. 2).

• VAEs seem to be relatively good at generalizing to a greater number of objects
in CLEVR. In particular, they reconstruct images with the correct number of
objects, although a few details of the objects may not be inferred correctly (e.g.
an object may be reconstructed with the wrong size, color, or shape). This is
surprising, since VAEs do not have any inductive bias for this, and the fact
that the encoder is OOD (i.e., the encoder input is OOD w.r.t. the distribution
used to train the encoder itself) might lead us to expect poor generalization
capabilities, as discussed by Dittadi et al. (2021b) and Dittadi et al. (2022b) in
the “OOD2” case. On the other hand, some object-centric models are remarkably
robust to this shift (in particular SPACE, as confirmed by the ARI in Fig. 7.8).
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Figure C.26. Reconstruction and segmentation of 4 random images from the held-
out test set of CLEVR6. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE
we select the 10 most salient slots using the predicted masks. As explained in the text, for
SPACE we select the 10 most salient slots using the predicted masks. For each model type,
we visualize the specific model with the highest ARI score in the validation set. The images
shown here are from the test set and were not used for model selection.
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Figure C.27. Reconstruction and segmentation of 4 random images from the held-out
test set of Multi-dSprites. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.28. Reconstruction and segmentation of 4 random images from the held-out
test set of Objects Room. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.29. Reconstruction and segmentation of 4 random images from the held-out
test set of Shapestacks. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.30. Reconstruction and segmentation of 4 random images from the held-out
test set of Tetrominoes. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.31. Input–reconstruction pairs of 4 random images from the held-out test
set of all 5 datasets, for the VAE model with convolutional (top) and broadcast (bottom)
decoder. Each VAE type was trained with 5 random seeds, and for each type we show here
the model with the lowest MSE on the validation set. The images shown here are from the
test set and were not used for model selection. For each image, we show the input on the left
and the reconstruction on the right. As these are not slot-based models, segmentation masks
and slot-wise reconstructions are not available.
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Figure C.32. Inputs and reconstructions for OOD images in CLEVR. Columns
from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder VAE,
broadcast decoder VAE. Rows from top to bottom: object style, object color, occlusion, crop,
number of objects.
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Figure C.33. Inputs and reconstructions for OOD images in Multi-dSprites.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder
VAE, broadcast decoder VAE. Rows from top to bottom: object style, object shape, occlusion,
crop.
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Figure C.34. Inputs and reconstructions for OOD images in Objects Room.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder
VAE, broadcast decoder VAE. Rows from top to bottom: object style, object color, occlusion,
crop.
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Figure C.35. Inputs and reconstructions for OOD images in Shapestacks. Columns
from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder VAE,
broadcast decoder VAE. Rows from top to bottom: object style, object color, occlusion, crop.
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Figure C.36. Inputs and reconstructions for OOD images in Tetrominoes. Columns
from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder VAE,
broadcast decoder VAE. Rows from top to bottom: object style, object color, occlusion, crop.
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